• Title/Summary/Keyword: Super Efficiency

Search Result 356, Processing Time 0.03 seconds

A Study on Dynamic Pile-Soil-Structure Interactions (말뚝-지반-구조물의 동섬 상호작용 연구)

  • Lee, In-Mo;Lee, Gwan-Ho;Kim, Yong-Jin
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-52
    • /
    • 1991
  • A study of the effects of dynamic pile-soil-structure interactions on the response of super- structures, supported by group piles, are presented in this paper. The dynamic impedance functions of single pile generated by soil-pile interactions are obtained and compared among others using the methods proposed by Novak, Gazetas, and Kuhlemeyer, and using the equivalent cantilever method. Group pile effects are also considered by the following approaches : neglecting interaction effects : group efficiency ratio concept : static interaction approach . and dynamic interaction approach. The responses of a nuclear containment structure are obtained by using the elastic half-space analysis, based on the impedance functions mentioned above. Main conclusions drawn from this study are as follows : 1. The numerical results of the impedance functions calculated by each method were quite different : the Novak's was the smallest, and the Kuhlemeyer's the highest. Considering group effects, similar values in each approach were obtained for the stiffness : the difference was very big for the damping. 2. The top displacement of the structure was reduced by 20% or more by pile installations. However, the base shear force, the base moment, and the resonance frequency were increased by more than two times due to stiffening effect of the ground by pile installations. 3. Whether frequency dependant impedence functions or frequency independant functions were used, the responses of the structure were not so much affected by the choice of the impedance functions. 4. The reduction effect of the top displacement increased with the increase of the maximum ground acceleration.

  • PDF

Study on the performance characteristics of a new CO2 auto-cascade heat pump system (새로운 CO2 오토 캐스케이드 열펌프 시스템의 성능특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.191-196
    • /
    • 2017
  • Owing to the harmful environmental effects of HCFC and CFC refrigerants discovered in the late 20th century, the need for environmentally friendly refrigerants such as $CO_2$ in cooling systems has increased. Air-source $CO_2$ heat pumps that utilize ambient heat in cold winter are less efficient because of a higher evaporation temperature, and it is difficult to manufacture the components of the heat pump owing to a super critical pressure of over 130 bar. This research aims to overcome these disadvantages and improve energy efficiency by introducing a new lower-pressure $CO_2$ auto-cascade heat pump system. $CO_2$-R32 zeotropic refrigerants were considered for two-stage expansion and effective cooling heat exchanging system configurations of the new auto-cascade heat pump. The results indicated that the efficiency of the two-stage expansion system was higher than that of the original one-stage expansion system. Furthermore, the two-stage expansion system showed significant performance improvements when the two-stage expansion stage from highest pressure of 70bar, intermediate expansion pressure of 25bar, and final low pressure of 10bar is applied. The COP of the new two-stage auto-cascade system (2.332) was 43.15% higher than that of the present simple auto-cascade system (1.629). Refrigerants having an evaporation temperature of $-10^{\circ}C$ or lower can be obtained that can be easily evaporated in an evaporator even at a low temperature.

Construction of Environmental Friendly Special-Purpose Ship for the Removal of Blue-green Algae (친환경적 녹조 제거용 특수선박 건조)

  • Shin, Jae-Ki;Yi, Hye-Suk;Jeong, Sun-A;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.404-406
    • /
    • 2009
  • This study note wished to introduce special-purpose ship for algae removal that is developed by core technology of our country. The ship is consisted of main frame and adjuvant that can attach and detach as cross (+) shape of a character. The characteristics of ship are super light weight and low draft. That is consisted of four devices as suction, collection, filtration and recovering units. Among these, filtration used screen filter (mesh size 30 ${\mu}m$). Also, can separate and remove water and algae by compression air participle notion. Percentage of moisture content of concentrated algal particle was 85%. Water parted with algae finally is exhausted to water area. Removal efficiency that compare by chlorophyll-$\alpha$ concentration was about 57% (inflow: 83.2 ${\mu}g\;L^{-1}$, outflow: 35.8 $[\mu}g\;L^{-1}$) without physical and chemical pretreatment. Forward, need to achieve effect test in various conditions (algal biomass, flow etc.) for efficiency and technological elevation of exclusion device. We wished to contribute in presuppression system construction of massive algal development that manage blue-green algae occurrence area effectively, and prevents spread as lower part of reservoir.

Preliminary Study on the Enhancement of Reconstruction Speed for Emission Computed Tomography Using Parallel Processing (병렬 연산을 이용한 방출 단층 영상의 재구성 속도향상 기초연구)

  • Park, Min-Jae;Lee, Jae-Sung;Kim, Soo-Mee;Kang, Ji-Yeon;Lee, Dong-Soo;Park, Kwang-Suk
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.443-450
    • /
    • 2009
  • Purpose: Conventional image reconstruction uses simplified physical models of projection. However, real physics, for example 3D reconstruction, takes too long time to process all the data in clinic and is unable in a common reconstruction machine because of the large memory for complex physical models. We suggest the realistic distributed memory model of fast-reconstruction using parallel processing on personal computers to enable large-scale technologies. Materials and Methods: The preliminary tests for the possibility on virtual manchines and various performance test on commercial super computer, Tachyon were performed. Expectation maximization algorithm with common 2D projection and realistic 3D line of response were tested. Since the process time was getting slower (max 6 times) after a certain iteration, optimization for compiler was performed to maximize the efficiency of parallelization. Results: Parallel processing of a program on multiple computers was available on Linux with MPICH and NFS. We verified that differences between parallel processed image and single processed image at the same iterations were under the significant digits of floating point number, about 6 bit. Double processors showed good efficiency (1.96 times) of parallel computing. Delay phenomenon was solved by vectorization method using SSE. Conclusion: Through the study, realistic parallel computing system in clinic was established to be able to reconstruct by plenty of memory using the realistic physical models which was impossible to simplify.

REDUCING LATENCY IN SMART MANUFACTURING SERVICE SYSTEM USING EDGE COMPUTING

  • Vimal, S.;Jesuva, Arockiadoss S;Bharathiraja, S;Guru, S;Jackins, V.
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • In a smart manufacturing environment, more and more devices are connected to the Internet so that a large volume of data can be obtained during all phases of the product life cycle. The large-scale industries, companies and organizations that have more operational units scattered among the various geographical locations face a huge resource consumption because of their unorganized structure of sharing resources among themselves that directly affects the supply chain of the corresponding concerns. Cloud-based smart manufacturing paradigm facilitates a new variety of applications and services to analyze a large volume of data and enable large-scale manufacturing collaboration. The manufacturing units include machinery that may be situated in different geological areas and process instances that are executed from different machinery data should be constantly managed by the super admin to coordinate the manufacturing process in the large-scale industries these environments make the manufacturing process a tedious work to maintain the efficiency of the production unit. The data from all these instances should be monitored to maintain the integrity of the manufacturing service system, all these data are computed in the cloud environment which leads to the latency in the performance of the smart manufacturing service system. Instead, validating data from the external device, we propose to validate the data at the front-end of each device. The validation process can be automated by script validation and then the processed data will be sent to the cloud processing and storing unit. Along with the end-device data validation we will implement the APM(Asset Performance Management) to enhance the productive functionality of the manufacturers. The manufacturing service system will be chunked into modules based on the functionalities of the machines and process instances corresponding to the time schedules of the respective machines. On breaking the whole system into chunks of modules and further divisions as required we can reduce the data loss or data mismatch due to the processing of data from the instances that may be down for maintenance or malfunction ties of the machinery. This will help the admin to trace the individual domains of the smart manufacturing service system that needs attention for error recovery among the various process instances from different machines that operate on the various conditions. This helps in reducing the latency, which in turn increases the efficiency of the whole system

A Study on the Evaluation and Improvement of Management Efficiency of Coastal Passenger Terminal (연안여객터미널 경영 효율성 평가 및 개선에 관한 연구)

  • Lee, Choong-Woo;Pai, Hoo-Seok;Shin, Yong-John
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.1-20
    • /
    • 2020
  • Coastal ferry routes are very important because they connect the mainland to islands, offer transportation for islanders, and bring tourism to islands. In particular, the recent increase in national income, prevalence of a culture that emphasizes work-life balance, and introduction of the five-day workweek have stoked interest in travel as a leisure pursuit, and demand for tourism from Korean people in islands has increased. As the number of passengers using coastal passenger terminals increases due to changes in the coastal tourism environment, the importance and need for coastal passenger terminal facilities and services is growing. Under these circumstances, it is necessary for the management organizations of coastal passenger terminals to manage and efficiently operate the terminals in such a way that budgets can be reasonably implemented and the convenience of passengers using the terminals is enhanced. This study primarily analyzed the management efficiency of coastal passenger terminals in terms of profitability and public interest using data envelopment analysis. The eight passenger terminals achieved low management efficiency in terms of profitability. These terminals should improve profitability by increasing income from terminal office rental and ancillary businesses and revenue from terminal fees by boosting island tourism and expanding overseas passenger transportation. The eight terminals with low management efficiency for public interest should increase the number of passengers by promoting island tourism, developing tour packages to Japan and China's coastal areas, developing new routes, and introducing super-high-speed ships.

Preparation of Polymer Gel Electrolyte for EDLCs using P(VdF-co-HFP)/PVP (P(VdF-co-HFP)/PVP를 이용한 EDLC용 고분자 겔 전해질의 제조)

  • Jung, Hyun-Chul;Jang, In-Young;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2006
  • Porous polymer gel electrolytes (PGEs) based on poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) as a polymer matrix and polyvinylpyrolidone (PVP) as a pore-forming agent were prepared and electrochemical properties were investigated for an electric double layer capacitor (EDLC) in order to increase a permeability of an electrolyte into the PGE. Propylene carbonate (PC) and ethylene carbonate (EC) as plasticizers, and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a supporting salt for the PGE were used. EDLC unit cells were assembled with the PGE and electrode comprising BP-20 and MSP-20 as activated carbon powders, Super P as a conducting agent, and P(VdF-co-HFP)/PVP as a mixed binder. Ion conductivity of PGEs increased with an increased PVP content and was the best at 7 wt% PVP, whereas electrochemical characteristics such as AC-ESR of unit cell were better in 3 wt%. And electrochemical characteristics of the unit cell with PGE were the best at a 33 : 33 weight ratio of PC to EC. Specific capacitance of a mixed plasticizer system of PE and EC was higher than that of pure PC. Ion conductivity of PGEs with a film thickness of $20{\mu}m$ was higher, but electrochemical characteristics of unit cells were higher for a $50{\mu}m$ membrane thickness. Also, the unit cell has shown the highest capacitance of 31.41 F/g and more stable electrochemical performance when PGE and electrode were hot pressed. Consequently, the optimum composition ratio of PGE for EDLCs was 23 : 66 : 11 wt% such as P(VdF-co-HFP) : PVP = 20 : 3 wt% and PC : EC = 44 : 22 wt%. In this case, $3.17{\times}10^{-3}S/cm$ of ion conductivity was achieved at the $50{\mu}m$ thickness of PGE for EDLCs. And the electrochemical characteristics of unit cells were $2.69{\Omega}$ of DC-ESR, 28 F/g of specific capacitance, and 100% of coulombic efficiency.

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.

Selection of Supplemental Light Source for Greenhouse Cultivation of Pepper during Low Radiation Period through Growth and Economic Analysis (생육 및 경제성 분석을 통한 약광기 고추의 온실재배를 위한 적정 보광 광원 선정)

  • Hwang, Hee Sung;Lee, Kwang Hui;Jeong, Hyeon Woo;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.204-211
    • /
    • 2022
  • To produce a high quality crop, light is an essential environmental factor in greenhouse cultivation. In the winter season, solar radiation is weak than other season. Therefore, using supplemental light during a low radiation period can increase the crop growth and yield. This study was conducted to select the economical supplemental light source for greenhouse cultivation in pepper during the low radiation period. The green pepper (Capsicum annuum 'Super Cheongyang') was transplanted on 5 September 2019. Supplemental lighting treatment was conducted from 1 January 2020 to 31 March 2020. RB LED (red and blue LED, red:blue = 7:3), W LED (white LED, R:G:B = 5:3:2), and HPS (high-pressure sodium lamp) were used as the supplemental light source. Non-treatment was used as the control. The plant height, SPAD, and number of nodes of pepper plants have no significant differences by supplemental light sources. However, the number of ramifications plants was the greatest in RB LED light source. Moreover, supplemental lighting increased photosynthesis of the pepper plant, and especially, the RB LED had the highest photosynthesis rate during supplemental lighting period. Also, the yield of pepper increased in the supplemental lighting treatment than in the control, and the RB LED had the greatest yield than other light sources. The electricity consumption was the highest in W LED and the lowest in HPS light. Through the economic analysis, the RB LED had high economic efficiency. In conclusion, these results suggest that using RB LED for supplemental light source during low radiation in pepper greenhouse increase the yield and economic feasibility.

A Color Analysis on Working Clothing in Domestic Machine and Heavy Industry

  • Park, Hye-Won;Bae, Hyun-Sook;Park, Jin-Ah;Kim, Jie-Kwan
    • Journal of Fashion Business
    • /
    • v.13 no.6
    • /
    • pp.61-75
    • /
    • 2009
  • The objective of this research is to the enhance the color function of work clothing : to research and analyze the hue and tone of work clothing colors to be used for machinery and heavy industries in national industrial complexes, Through this research, the color using problems which related with safety workers will be revealed. For this project, total 42 sets of work suits were sampled from 12 different companies in the machinery and construction industries in the national industrial complexes of Gyeongsang Namdo Province and 16 sets of work suits currently being sold in the market. The collected work suits samples were classified according to item types and design. Color measurements were taken thus: After calibration according to ASTM D1729 specifications of standardized configuration settings to match standardized luminous source D65(Daylight 6500K) in color cabinet BOTECK SuperLight-VI, the RGB values of the work suits were calculated using PANTONE Color Cue TX. The RGB values of the colors thus derived were converted into V/C values using the Munsell Conversion 9.0.6 and analyzed with Munsell's 10-color system and PCCS. The results were presented according to Munsell's color wheel and color and brightness distributions were expressed in table form, as well as presented as a tone map. Following analysis, color hue distribution was found to be concentrated around PB, and brightness distribution toward the low end and mid range of the scale. Saturation values were distributed mostly around the low end of the scale. Following color tone analysis according to PCCS, it became apparent that colors were mainly distributed around dkg, ltg, and g, at low- and mid-brightness and low-saturation. Therefore, it may be concluded that colors used in work suits in the machinery and heavy industries are mainly cool colors, at low- and mid-brightness and low saturation. It is conjectured that such colors were applied uniformly in the workplace in order to serve certain functions, such as concealment of stains and contamination. Therefore, it follows that the utilization of colors, among other functions served by working clothings, must be taken into consideration in order to enhance safety and efficiency.