• Title/Summary/Keyword: Sung Bong Park

Search Result 1,098, Processing Time 0.027 seconds

Sliding Mode Control for Linear System with Mismatched Uncertainties (정합조건을 만족하지 않는 선형 시스템에 대한 슬라이딩 모드 제어)

  • Seong, Jae-Bong;Kwon, Sung-Ha;Park, Seung-Kyu;Jeung, Eun-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a design method of sliding model control (SMC) for single input linear systems with mismatched uncertainties. We define a virtual state based on the controllable canonical form of the nominal system. And we defined a sliding surface for the augmented system with a virtual state. This sliding surface makes it possible to use the SMC technique with various types of controllers. In this paper, we construct a controller that combines SMC with robust controller. We design a robust controller for the system with mismatched uncertainties using a form of linear matrix inequality(LMI). We make a virtual state from this robust control input and the states of the nominal system. And we design a sliding model controller that stabilizes the overall closed-loop system.

  • PDF

The change of recirculation zone with the inlet angle of secondary air in an incinerator (2차 공기 주입각도에 따른 소각로 내부의 재순환 영역 변화)

  • Kim, Sung-Joon;Park, Min-Ju;Chun, Bong Jun
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.55-62
    • /
    • 2000
  • The purpose of this research is to find out how the inlet angle of secondary air affects the formation of recirculation zone inside a small incinerator. A commercial code, PHOENICS, is used to simulate the flow field of an incinerator. The computational grid system is constructed by Multi-Block technique. Numerical experiments are done with the five different angles of secondary air inlet. The formation of recirculation zone is evaluated by checking velocity fields. The computational results show that recirculation zone is clearly formed from 60 degree of inlet angle and the zone of recirculation is widen as angle of recirculation is increased to $75^{\circ}$.

  • PDF

Analysis of the relationship between operational condition and temperature distribution in a small incinerator (소형 소각로에서 운전조건과 온도분포 사이의 관계 분석)

  • Kim, Sung-Joon;Park, Jong-Hwan;Chun, Bong-Jun
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.63-70
    • /
    • 2000
  • One aims to find out how the operation condition of secondary inlet angle effects the temperature distribution inside a small incinerator. A finite volume commercial code, PHONICS, is used to simulate the temperature field in an incinerator. The computational grid system is constructed by Multi-Block technique. The governing equations based on the curvilinear coordinates are used. Numerical experiments are done with the five variations of secondary air inlet. The temperature distribution is quantified by the statistical deviation of temperature in an incinerator. The computational analysis says that the certain angle of secondary air inlet could improve the uniformity of temperature distribution in an incinerator.

  • PDF

Modeling and Simulation of LED Driver (LED driver 모델링 및 시뮬레이션에 관한 연구)

  • Han, Soo-Bin;Park, Suck-In;Song, Eu-Gine;Jeoung, Hak-Geun;Jung, Bong-Man;You, Sung-Won
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.113-115
    • /
    • 2008
  • This paper shows the method of modeling and simulation of LED driver circuit. Simplified LED modeling is introduced and a driver IC, HV9910, is modeled by implementing the major function blocks. Circuit of buck type converter is constructed for simulation. Simulation includes the internal function of IC and various performances such as LED array current control and dimming. This results show that simulation approach is valid for circuit optimization and reduction of development time.

  • PDF

Emission Characteristics of Green OLED with Hole Transport Material

  • Gao, Xinwei;Park, Jong-Yek;Baek, Yong-Gu;Ju, Sung-Hoo;Yang, Jae-Woong;Lee, Bong-Sub;Kim, Jung-Taek;Paek, Kyeong-Kap
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.687-690
    • /
    • 2007
  • OLED devices with a multilayer structure were fabricated using newly synthesized hole transport materials. We confirmed that ELM229 and ELM339, hole transport materials did not affect the electroluminescence color, and that by adopting this novel hole transport materials, OLEDs with a lower driving voltage but a higher efficiency were developed.

  • PDF

Design and Implementation of a Virtual Fitting System Using Kinect (키넥트를 이용한 가상 의류 착의 시스템)

  • Park, Yeong-Seok;Jang, Sung-Bong;Kim, Byung-Man;Choi, Jung-Hun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.749-750
    • /
    • 2016
  • 본 논문에서는 키넥트를 이용한 가상 착의 시스템을 제안하고 설계한다. 본 시스템에서는 키넥트에 연결된 카메라로 사용자 영상을 촬영하고 촬영된 영상과 상반식 좌표를 시스템에 전송한다. 시스템은 수신된 영상으로부터, 상반신을 찾아내고 이를 가상의류 이미지와 합성시켜 사용자에게 보여준다. 사용자는 여러 가상 의류이미지를 실시간으로 변경해가며, 자신에게 가장 잘 어울리는 의류를 선택할 수 있다. 본 시스템의 장점은 사용자가 온라인 쇼핑시, 직접 매장을 방문하지 않고 가상으로 옷을 입어봄으로써, 자신에게 어울리는 옷을 편리하게 고를 수 있다는 점이다.

A State-of-Art of Ballast Performances for T-5 lamp (최근의 T5 안정기의 성능에 대한 고찰)

  • Kim, Gue-Duck;Han, Soo-Bin;You, Sung-Won;Jung, Bong-Man;Park, Suck-In;Jung, Hak-Kun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1087-1089
    • /
    • 2000
  • T5 형광등용 안정기 제품에 대한 성능을 고찰하기 위해 T5 형광등에 대한 정확한 이해와 함께 대표적인 안정기회사들의 제품에 대해 광출력에 대한 특성, 고조파 및 역율등 전기적 특성 기타 특성등에 대해 시험하여 분석하였다.

  • PDF

Fabrication of Metal Nanohoneycomb Structures and Their Tribological Behavior

  • Kim, Sung-Han;Lee, Sang-Min;Choi, Duk-Hyun;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.101-110
    • /
    • 2008
  • Metal nanohoneycomb structures were fabricated by E-beam evaporation and a two-step anodization process in phosphoric acid. Their tribological properties of adhesion and friction were investigated by AFM in relation to the pore size of the nanohoneycomb structures. Variations of the adhesive force are not found with pore size, but formation of the pore greatly reduces the adhesive force compared to the absence of pore structure. The coefficient of friction increased nonlinearly with pore size, due to surface undulation around the pore. Tribological properties do not differ greatly between the original nanohoneycomb structure and the metal nanohoneycomb structure.

Structural Design Optimization of a Micro Milling Machine for Minimum Weight and Vibrations (마이크로 밀링 머신의 저진동.경량화를 위한 구조 최적설계)

  • Jang, Sung-Hyun;Kwon, Bong-Chul;Choi, Young-Hyu;Park, Jong-Kweon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • This paper presents structural design optimization of a micro milling machine for minimum weight and compliance using a genetic algorithm with dynamic penalty function. The optimization procedure consists of two design stages, which are the static and dynamic design optimization stages. The design problem, in this study, is to find out thickness of structural members which minimize the weight, the static compliance and the dynamic compliance of the micro milling machine under several constraints such as dimensional constraints, maximum compliance limit, and safety factor criterion. Optimization results showed a great reduction in the static and dynamic compliances at the spindle nose of the micro milling machine in spite of a little decrease in the machine weight.

The Effects of Ultrasonic Vibration on Surface Finish in Nano-second Laser Machining (나노초 레이저 가공에서 초음파 진동이 가공표면에 미치는 영향)

  • Kang, Bong-Chul;Kim, Gun-Woo;Cho, Sung-Hak;Park, Jong-Kweon;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.402-406
    • /
    • 2010
  • Conventionally, the machined surface roughness in nano-second(ns) laser machining is damaged and rough due to thermal effects. To obtain the improved surface finish, the ultrasonic vibration is applied to ns-laser machining. The ultrasonic vibration jig is developed to apply the ultrasonic high precision motion to workpieces. And then the ns-laser machining is conducted to compare the effects of the ultrasonic vibration. The results show that the surface roughness with ultrasonic vibration is smoother than that without the vibration. The phenomenon could be explained as enhancement of heat transfer by ultrasonic vibration.