• Title/Summary/Keyword: Summability of Fourier series

Search Result 15, Processing Time 0.019 seconds

On Approximation of Functions Belonging to Lip(α, r) Class and to Weighted W(Lr,ξ(t)) Class by Product Mean

  • Nigam, Hare Krishna;Sharm, Ajay
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.4
    • /
    • pp.545-556
    • /
    • 2010
  • A good amount of work has been done on degree of approximation of functions belonging to Lip${\alpha}$, Lip($\xi$(t),r) and W($L_r,\xi(t)$) and classes using Ces$\`{a}$ro, N$\"{o}$rlund and generalised N$\"{o}$rlund single summability methods by a number of researchers ([1], [10], [8], [6], [7], [2], [3], [4], [9]). But till now, nothing seems to have been done so far to obtain the degree of approximation of functions using (N,$p_n$)(C, 1) product summability method. Therefore the purpose of present paper is to establish two quite new theorems on degree of approximation of function $f\;\in\;Lip({\alpha},r)$ class and $f\;\in\;W(L_r,\;\xi(t))$ class by (N, $p_n$)(C, 1) product summability means of its Fourier series.

On Lp(T2)-Convergence and Móricz (Lp(T2)-수렴성과 모리츠에 관하여)

  • LEE, Jung Oh
    • Journal for History of Mathematics
    • /
    • v.28 no.6
    • /
    • pp.321-332
    • /
    • 2015
  • This paper is concerned with the convergence of double trigonometric series and Fourier series. Since the beginning of the 20th century, many authors have studied on those series. Also, Ferenc $M{\acute{o}}ricz$ has studied the convergence of double trigonometric series and double Fourier series so far. We consider $L^p(T^2)$-convergence results focused on the Ferenc $M{\acute{o}}ricz^{\prime}s$ studies from the second half of the 20th century up to now. In section 2, we reintroduce some of Ferenc $M{\acute{o}}ricz^{\prime}s$ remarkable theorems. Also we investigate his several important results. In conclusion, we investigate his research trends and the simple minor genealogy from J. B. Joseph Fourier to Ferenc $M{\acute{o}}ricz$. In addition, we present the research minor lineage of his study on $L^p(T^2)$-convergence.

On the study of Waterman with respect to Bounded Variation (유계변동과 관련된 Waterman의 연구에 대하여)

  • Kim Hwa-Jun
    • Journal for History of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.115-124
    • /
    • 2006
  • Functions of bounded variation were discovered by Jordan in 1881 while working out the proof of Dirichlet concerning the convergence of Fourier series. Here, we investigate Waterman's study with respect to bounded variation and its application on a closed bounded interval. The value of his study is whether Dirichlet-Jordan theorem holds in which function classes or not and summability method is what modifies its Fourier coefficients to make resulting series converge to the associated function. We have a view that the directions of future research with respect to bounded variation are two things; one is to find the function spaces which are larger than HBV and smaller than ${\phi}BV$, and the other is to find a fields of applications.

  • PDF