• Title/Summary/Keyword: Sulfates

Search Result 121, Processing Time 0.025 seconds

Development of Sulfated Oyster Shell-Based Solidifying Agent for Flowable Backfill Material (황산처리 굴패각을 이용한 유동성 뒷채움용 고화재 개발)

  • Wang, Xue;Kim, Sung Bae;Kim, Chang-Joon
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.315-322
    • /
    • 2018
  • Industrial use of waste oyster shells is limited because of requiring excessive energy for converting natural oyster shells in the form of calcium carbonate ($CaCO_3$) into calcium oxide (CaO) for this purpose. This study aimed to develop energy-saving process for producing solidifying agent using waste oyster shells for backfill materials. It was suggested that oyster shells were converted to calcium sulfates which were mixed with sodium hydroxide solution and red clay, forming solid specimen. The optimal concentrations of sulfuric acid for sulfation of oyster shell and sodium hydroxide to generate calcium hydroxide ($Ca(OH)_2$), were determined. Unconfined compressive strength of solid specimen increased with increasing the content of solidifying agent while it increased also with increasing ratio of natural oyster shells to coal ash. The result clearly demonstrates that solidifying agent consisting of sulfuric acid-treated oyster shell, coal ash, and sodium hydroxide solution, can be effectively utilized for preparing backfill materials using natural oyster shell and coal ash. Sulfuric acid-treated oyster shell-based solidifying agent has not been previously developed and will contribute to broaden industrial application of waste oyster shells.

Self-Healing Property of Hardened Cement Paste (시멘트 페이스트 경화체의 self healing 특성)

  • Kim, Jae Young;Byun, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.297-304
    • /
    • 2008
  • It is well known that cracks in concrete decrease permeability and durability of concrete because cracks enhance the penetration of water or corrosive chemicals like as chlorides, carbon dioxides, sulfates and some others. But some of cracks in hardened cements may be sealed in case of contacting water. This phenomenon is called "self healing" and it has a close relation to hydration products newly formed on surfaces of cracks. Many studies on self healing in concretes commonly showed that CSH gel has been observed on crack surfaces. And some studies have reported that calcium hydroxides and ettringite were observed as well as CSH gel on crack surfaces. This study was carried out to investigate hydration products formed by self healing process and also examine the influence of waterproof admixture for concretes on self healing of cement. As a result of XRD, DSC, SEM and EDX analysis of crack surfaces, it was found that self healing of cement was related to CSH gel, calcium hydroxides and ettringite. And waterproof admixture increased fibrous (needle-like) hydration products which were in network form. It is estimated that such fibrous products are effective for self healing process of cement system.

Fluid Inclusion and Stable Isotope Studies of the Kwangsin Pb-Zn Deposit (광신 연 - 아연 광상의 유체포유물 및 안정동위원소 연구)

  • Choi, Kwang-Jun;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.505-517
    • /
    • 1997
  • Lead and zinc mineralization of the Kwangsin mine was formed in quartz and carbonate veins that filled fault-related fractures in the limestone-rich Samtaesan Formation of the Chosun Supergroup and the phyllite-rich Suchangni Formation of unknown age. A K-Ar date of alteration sericite indicates that the Pb-Zn mineralization took place during Late Cretaceous (83.5 Ma), genetically in relation to the cooling of the nearby Muamsa Granite (83~87 Ma). Mineral paragenesis can be divided into three stages (I, II, III): (I) the deposition of barren massive white quartz, (II) the main Pb-Zn mineralization with deposition of white crystalline quartz and/or carbonates (rhodochrosite and dolomite), and (III) the deposition of post-ore barren calcite. Mineralogic and fluid inclusion data indicate that lead-zinc minerals in middle stage II (IIb) were deposited at temperatures between $182^{\circ}$ and $276^{\circ}C$ from fluids with salinities of 2.7 to 5.4 wt. % equiv. NaCl and with log $fs_2$ values of -15.5 to -11.8 atm. The relationship between homogenization temperature and salinity data indicates that lead-zinc deposition was a result of fluid boiling and later meteoric water mixing. Ore mineralization occurred at depths of about 600 to 700 m. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S_{CDT}=9.0{\sim}14.5$ ‰) indicate a relatively high ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids (up to 14 ‰), likely indicating an igneous source of sulfur largely mixed with an isotopically heavier sulfur source (possibly sulfates in surrounding sedimentary rocks). There is a remarkable decrease of calculated ${\delta}^{18}O$ value of water in hydrothermal fluids with increasing paragenetic time: stage I, 14.6~10.1 ‰; stage IIa, 5.8~2.2 ‰; stage IIb, 0.8~2.0 ‰; stage IIc, -6.1~-6.8 ‰, This indicates a progressive increase of meteoric water influx in the hydrothermal system at Kwangsin. Measured and calculated hydrogen and oxygen isotope values indicate that the Kwangsin hydrothermal fluids was formed from a circulating (due to intrusion of the Muamsa Granite) meteoric waters which evolved through interaction mainly with the Samtaesan Formation (${\delta}^{18}O=20.1$ to 24.9 ‰) under low water/rock ratios.

  • PDF

Mineralogical and Fluid Inclusion Study on Seafloor Hydrothermal Vents at TA25 Subsea Caldera in Tongan Waters (통가 TA25 해저산 칼데라 해저열수 분출구의 광석광물 산상 및 유체포유물 연구)

  • Choi, Sun Ki;Lee, Kyeong-Yong;Pak, Sang Joon;Choi, Sang-Hoon;Lee, In-Kyeong
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.273-285
    • /
    • 2015
  • The extensive hydrothermal deposits have been found, for the first time, on the western TA25 seamount caldera in the Tonga arc. The seafloor hydrothermal vents are active and immature, emitting the transparent fluids of which temperatures range from $150^{\circ}C$ to $242^{\circ}C$ (average=$203^{\circ}C$). The recovered hydrothermal sulfides are mainly composed of sphalerite, pyrite, marcasite, galena, chalcopyrite, covellite, tennantite, enargite and sulfates such as barite, gypsum/anhydrite. Predominant sphalerite categorize it into Zn-rich hydrothermal ore body. Zn-rich sulfide ores have minor enargite, indicating that mineralization occurred in high sulfidation environment. The proportion and FeS content of sphalerite increase from outside to inside of the hydrothermal ores, respectively. In particular, sphalerite has a great silver content (up to ~10 wt.%). Chalcopyrite is more frequently observed in mound than in the chimney, implying mineralization temperature in the mound is higher than in the chimney. Homogenization temperatures and salinities from fluid inclusions in barite at the mound range from $148^{\circ}C$ to $341^{\circ}C$ (average=$213^{\circ}C$) and 0.4 to 3.6 equiv. wt.% NaCl, respectively. Homogenization temperatures suggest that sulfides in the mound mineralized at a higher temperature (${\geq}200^{\circ}C$) than in the chimney.

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.

Sanitary Characteristics of Seawater and Sediments in Tongyeong Harbor (통영항의 해수 및 저질의 위생학적 특성)

  • Park, Jun-Yong;Kim, hhhYeong-In;Bae, Ki-Sung;Oh, Kwang-Soo;Choi, Jong-Duck
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • The bacteriological and physiochemical analysis of sea water and sediments in Tongyeong harbor was conducted to evaluate sanitary conditions. The samples were collected at 8 stations established once a month from June, 2008 to May, 2009. During the study period, the range of temperature was from 6.7 to $25.2^{\circ}C$, transparency ranged from 1.2 to 2.6 m, chemical oxygen demand ranged from 1.90 to 2.92 mg/L, dissolved oxygen ranged from 6.2 to 10.5 mg/L, dissolved nitrogen ranged from 0.052 to 0.098 mg/L, phosphate ranged from 0.044 to 0.065 mg/L, respectively. Seafood, if eaten raw, carries the risk of food poisoning. Seafood poisoning is often cause by pathogenic microorganism originating from fecal contamination, such as Salmonella sp., Shigella sp. and norovirus. Fecal coliforms are an important indicator of fecal contamination. Therefore, data on fecal coliform are very important for evaluating the safety of fisheries in coastal areas. So, we investigated the sanitary indicate bacteria. The coliform group and fecal coliform MPN's of sea water in Tongyeong harbor were ranged from < 1.8~22,000/100 mL (GM 164.9 MPN/100 mL) and < 1.8~7,900 MPN/100 mL (GM 33.7 MPN/100 mL), respectively. Total coliform were detected 97.0% in 96 of samples and 68.9% of total coliforms were fecal coliforms. These results similar to another seawater detection ratio of total coloforms and fecal coliforms. The Vibrios was isolated and identified with VITEK system. Four hundred eighty strains that were obtained from sea water samples in Tongyeong harbor Detection ratio Vibrio alginolyticus, 34.2%, Vibrio parahaemolyticus, 13.8%, Vibrio vulnificus 10.0%, and V. mimicus 12.5% respectively. Vibrio cholerae O1, was not detected. During the study period, the ranges of water content, ignition loss, COD, and acid volatile sulfates in sediments in Tongyeoung harbor were 41.0~57.4%, 7.8~10.5%, 6.51~9.30 mg/g, 0.04~0.09 mg/g, respectively. Heavy metals in sediment of Tongyeoung harbor were Cd, $0.10{\pm}0.05$; Cu, $4.79{\pm}8.20$; As, $1.95{\pm}0.17$; Hg, $0.10{\pm}0.07$; $Cr^{6+}$, $0.34{\pm}0.12$; Zn, $125.33{\pm}16.40$; Ni, $16.43{\pm}1.93$ mg/kg.

Bacteriological and Physiochemical Quality of Seawater and Surface Sediments in Sacheon Bay (사천만의 해수 및 표층 퇴적물의 세균학적 및 이화학적 특성)

  • Park, Jun-Yong;Kim, Yeong-In;Bae, Ki-Sung;Oh, Kwang-Soo;Choi, Jong-Duck
    • Journal of agriculture & life science
    • /
    • v.44 no.2
    • /
    • pp.7-15
    • /
    • 2010
  • This study was conducted to investigate the bacteriological and physiological quality of seawater and surface sediments in Sacheon Bay of Korea from January to September in 2009. During the study period, the means of temperature was range from 5.3 to $24.9^{\circ}C$ (mean $17.7{\pm}0.4^{\circ}C$), transparency range from 1.4 to 2.5 m (mean $1.8{\pm}0.5m$), suspended solid ranged from 16.2 to 35.8 mg/L (mean $24.2{\pm}2.2mg/L$), chemical oxygen demand ranged from 1.42 to $3.29mgO_2/L$ (mean $2.06{\pm}0.55mgO_2/L$), dissolved oxygen ranged from 6.7 to 9.5mg/L (mean $7.9{\pm}0.6mg/L$), respectively. Seafood, if eaten raw, carries the risk of food poisoning. Seafood poisoning is often cause by pathogenic microorganism originating from fecal contamination, such as Salmonella sp., Shigella sp. and norovirus. Fecal coliforms are an important indicator of fecal contamination. Therefor, data on fecal coliform are very important for evaluating the safety of fisheries in coastal areas. So, we investigated the sanitary indicate bacteria. In this study, 56 sea water samples were collected from the Sacheon Bay, and total and fecal coliforms were compared and analyzed. The coliform group and fecal coliform MPN's of sea water in Sacehon Bay were ranged from <1.8~7,900 MPN/100mL (GM 214.7 MPN/100mL) and <1.8~330 MPN/100mL (GM 9.7 MPN/ 100mL), respectively. Total coliforms were detected in 75.0% of the samples and 76.2% of the total coliforms were fecal coliforms. During the study period, the means of water content, ignition loss, COD, and acid volatile sulfates in sediments in Sacheon Bay were $53.28{\pm}2.58%$, $9.38{\pm}0.42%$, $14.23{\pm}3.36mgO_2/g$, $0.09{\pm}0.07mgS/g$, respectively.

Green-blue Coloured Cu-Zn Hydrated Sulfate Minerals from Gukjeon Mine in Miryang (밀양 국전광산의 녹-청색 구리-아연 수화황산염 광물)

  • Koo, Hyo Jin;Jang, Jeong Kyu;Do, Jin Young;Jeong, Gi Young;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.473-483
    • /
    • 2018
  • Green-blue coloured supergene minerals are covering host rocks along the gallery wall in the Gukjeon mine, a lead - zinc skarn deposit located in Miryang, Gyeongsangnam-do. These minerals have been described as azurite or malachite, but recent study recognized that the green minerals are devilline and blue minerals are Cu-Zn hydrated sulfates, but exact identification and detailed mineral characteristics are also not well known. In this study, we divide green-blue minerals into five groups (GJG) according to their external features and conducted XRD and SEM analyzes in order to identify mineral name and clarify the mineralogical characteristics. GJG-1, a bright bluish green group, consists of brochantite and quartz and GJG-2, a pale green colour with easily crumbly, of schulenbergite and a small amount of gypsum. Although pale blue GJG-3 and glassy lustrous bluish green GJG-4 have the same mineral assemblages with serpierite and gypsum in spite of different colour and luster, gypsum content may control the physical properties. GJG-5 with a gel phase mixture of pale blue and dark blue mineral is comprised of hydrowoodwardite, glaucocerinite, bechererite, serpierite and gypsum. The six green-blue minerals from the Gukjeon mine could be classified by Cu:Zn ratio, (Si + Al) content, Si:Al ratio, and Ca content. The physico-chemical environment of mineral formation is considered to be controlled by the geochemical factors in the surrounding fluid, and it looks forward that the accurate formation environment will be revealed through additional research. This paper gives greater mineralogical significance in the first report of several hydrated sulfate such as serpierite, glaucocerinite and bechererite in Korea. It has also rarely been reported the occurrence of several Cu-Zn hydrated sulfate in the same deposit in the world.

Temporal Variations of Ore Mineralogy and Sulfur Isotope Data from the Boguk Cobalt Mine, Korea: Implication for Genesis and Geochemistry of Co-bearing Hydrothermal System (보국 코발트 광상의 산출 광물종 및 황동위원소 조성의 시간적 변화: 함코발트 열수계의 성인과 지화학적 특성 고찰)

  • Yun, Seong-Taek;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.289-301
    • /
    • 1997
  • The Boguk cobalt mine is located within the Cretaceous Gyeongsang Sedimentary Basin. Major ore minerals including cobalt-bearing minerals (loellingite, cobaltite, and glaucodot) and Co-bearing arsenopyrite occur together with base-metal sulfides (pyrrhotite, chalcopyrite, pyrite, sphalerite, etc.) and minor amounts of oxides (magnetite and hematite) within fracture-filling $quartz{\pm}actinolite{\pm}carbonate$ veins. These veins are developed within an epicrustal micrographic granite stock which intrudes the Konchonri Formation (mainly of shale). Radiometric date of the granite (85.98 Ma) indicates a Late Cretaceous age for granite emplacement and associated cobalt mineralization. The vein mineralogy is relatively complex and changes with time: cobalt-bearing minerals with actinolite, carbonates, and quartz gangues (stages I and II) ${\rightarrow}$ base-metal sulfides, gold, and Fe oxides with quartz gangues (stage III) ${\rightarrow}$ barren carbonates (stages IV and V). The common occurrence of high-temperature minerals (cobalt-bearing minerals, molybdenite and actinolite) with low-temperature minerals (base-metal sulfides, gold and carbonates) in veins indicates a xenothermal condition of the hydrothermal mineralization. High enrichment of Co in the granite (avg. 50.90 ppm) indicates the magmatic hydrothermal derivation of cobalt from this cooling granite stock, whereas higher amounts of Cu and Zn in the Konchonri Formation shale suggest their derivations largely from shale. The decrease in temperature of hydrothermal fluids with a concomitant increase in fugacity of oxygen with time (for cobalt deposition in stages I and II, $T=560^{\circ}C-390^{\circ}C$ and log $fO_2=$ >-32.7 to -30.7 atm at $350^{\circ}C$; for base-metal sulfide deposition in stage III, $T=380^{\circ}-345^{\circ}C$ and log $fO_2={\geq}-30.7$ atm at $350^{\circ}C$) indicates a transition of the hydrothermal system from a magmatic-water domination toward a less-evolved meteoric-water domination. Sulfur isotope data of stage II sulfide minerals evidence that early, Co-bearing hydrothermal fluids derived originally from an igneous source with a ${\delta}^{34}S_{{\Sigma}S}$ value near 3 to 5‰. The remarkable increase in ${\delta}^{34}S_{H2S}$ values of hydrothermal fluids with time from cobalt deposition in stage II (3-5‰) to base-metal sulfide deposition in stage III (up to about 20‰) also indicates the change of the hydrothermal system toward the meteoric water domination, which resulted in the leaching-out and concentration of isotopically heavier sulfur (sedimentary sulfates), base metals (Cu, Zn, etc.) and gold from surrounding sedimentary rocks during the huge, meteoric water circulation. We suggest that without the formation of the later, meteoric water circulation extensively through surrounding sedimentary rocks the Boguk cobalt deposits would be simple veins only with actinolite + quartz + cobalt-bearing minerals. Furthermore, the formation of the meteoric water circulation after the culmination of a magmatic hydrothermal system resulted in the common occurrence of high-temperature minerals with later, lower-temperature minerals, resulting in a xenothermal feature of the mineralization.

  • PDF

Hydrochemical and Isotopic Characteristics, and Origin of Noble Gas for Low-temperature Hot Spring Waters in the Honam Area (호남지역 저온형 온천수의 수리지화학적 및 안정동위원소 특성과 영족기체의 기원에 관한 연구)

  • Jeong, Chan-Ho;Hur, Hyun-Sung;Nagao, Keisuke;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.635-649
    • /
    • 2007
  • Geochemical composition, stable isotopes $({\delta}^{18}O,\;{\delta}D,\;{\delta}^{34}S)$ and noble gases(He, Ne and Ar) of nine hot spring water and three groundwater for five hot springs(Jukam, Hwasun, Dokog, Jirisan, Beunsan) from the Honam area were analyzed to investigate the hydrogeochemical characteristics and the hydrogeochemical evolution of the hot spring waters, and to interpret the source of sulfur, helium and argon dissolved in the hot spring waters. The hot spring waters show low water temperature ranging from 23.0 to $30.5^{\circ}C$ and alkaline characteristics of pH 7.67 to 9.98. Electrical conductivity of hot spring waters is $153{\sim}746{\mu}S/cm$. Groundwaters in this area were characterized by the acidic to neutral pH range$(5.85{\sim}7.21)$, the wide electrical conductivity range $(44{\sim}165{\mu}S/cm)$. The geochemical compositions of hot spring and groundwaters can be divided into three water types: (1) $Na-HCO_3$ water type, (2) Na-Cl water type and (3) $Ca-HCO_3$ water type. The hot spring water of $Ca-HCO_3$ water type in early stage have been evolved through $Ca(Na)-HCO_3$ water type into $Na-HCO_3$ type in final stage. In particular, Jurim alkaline(pH 9.98) hot spring water plotted at the end point of $Na-HCO_3$ type in the Piper diagram is likely to arrive into the final stage in geochemical evolution process. Hydrogen and oxygen isotopic data of the hot spring water samples indicate that the hot spring waters originated from the local meteoric water showing latitude and altitude effects. The ${\delta}^{34}S$ value for sulfate of the hot spring waters varies widely from 0.5 to $25.9%o$. The sulfur source of most hot spring waters in this area is igneous origin. However, The ${\delta}^{34}S$ also indicates the sulfur of JR1 hot water is originated from marine sulfur which might be derived ken ancient seawater sulfates. The $^3He/^4He\;and\;^4He/^{20}Ne$ ratios of the hot spring waters range from $0.0143{\times}10^{-6}\;to\;0.407{\times}10^{-6}\;and\;6.49{\sim}584{\times}10^{-6}$, respectively. The hot spring waters are plotted on the mixing line between air and crustal components. It means that the He gas in the hot spring waters was mainly originated from crustal sources. However, the JR1 hot spring water show a little mixing ratio of the helium gas of mantle source. The $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range from $292.3{\times}10^{-6}\;to\;304.1{\times}10^{-6}$, implying the atmospheric argon source.