DOI QR코드

DOI QR Code

Green-blue Coloured Cu-Zn Hydrated Sulfate Minerals from Gukjeon Mine in Miryang

밀양 국전광산의 녹-청색 구리-아연 수화황산염 광물

  • Koo, Hyo Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Jang, Jeong Kyu (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Do, Jin Young (Department of Archaeology, Anthropology and Art History, Gyeongju University) ;
  • Jeong, Gi Young (Department of Earth and Environmental Sciences, Andong National University) ;
  • Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 구효진 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 장정규 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 도진영 (경주대학교 고고인류미술사학과) ;
  • 정기영 (안동대학교 지구환경과학과) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소)
  • Received : 2018.11.05
  • Accepted : 2018.12.15
  • Published : 2018.12.28

Abstract

Green-blue coloured supergene minerals are covering host rocks along the gallery wall in the Gukjeon mine, a lead - zinc skarn deposit located in Miryang, Gyeongsangnam-do. These minerals have been described as azurite or malachite, but recent study recognized that the green minerals are devilline and blue minerals are Cu-Zn hydrated sulfates, but exact identification and detailed mineral characteristics are also not well known. In this study, we divide green-blue minerals into five groups (GJG) according to their external features and conducted XRD and SEM analyzes in order to identify mineral name and clarify the mineralogical characteristics. GJG-1, a bright bluish green group, consists of brochantite and quartz and GJG-2, a pale green colour with easily crumbly, of schulenbergite and a small amount of gypsum. Although pale blue GJG-3 and glassy lustrous bluish green GJG-4 have the same mineral assemblages with serpierite and gypsum in spite of different colour and luster, gypsum content may control the physical properties. GJG-5 with a gel phase mixture of pale blue and dark blue mineral is comprised of hydrowoodwardite, glaucocerinite, bechererite, serpierite and gypsum. The six green-blue minerals from the Gukjeon mine could be classified by Cu:Zn ratio, (Si + Al) content, Si:Al ratio, and Ca content. The physico-chemical environment of mineral formation is considered to be controlled by the geochemical factors in the surrounding fluid, and it looks forward that the accurate formation environment will be revealed through additional research. This paper gives greater mineralogical significance in the first report of several hydrated sulfate such as serpierite, glaucocerinite and bechererite in Korea. It has also rarely been reported the occurrence of several Cu-Zn hydrated sulfate in the same deposit in the world.

경남 밀양시에 소재한 납-아연 스카른 광상인 국전광산의 갱내 벽면을 따라 지하수로부터 침전된 청-녹색의 광물들이 암반을 피복하고 있는데, 이 광물들은 과거 문헌에서 남동석과 공작석으로 기재되어 왔으나, 최근 연구를 통해 녹색의 광물은 데빌린(devilline), 청색의 광물은 수화구리아연황산염 광물들로 보고되었다. 그러나 자세한 연구가 이루어지지 않아 정확한 동정이나 광물학적 특성은 알려지지 않았다. 본 연구에서는 청-녹색 이차 광물들을 외형적 특징에 따라 5개 그룹으로 구분하고, X-선회절분석와 주사전자현미분석을 실시하여 정확한 광물 동정과 광물학적 특성을 규명하였다. GJG-1은 밝은 청록색을 띠는 그룹으로 브로칸타이트(brochantite)와 석영, GJG-2는 연두색을 띠며 쉽게 부스러지는 특징을 가지는 그룹으로 슐럼버가이트(schulenbergite)와 소량의 석고(gypsum)로 확인되었다. 연한 청색의 GJG-3와 유리광택을 가지는 청록색의 GJG-4는 외형적 특징은 달랐지만 구성 광물은 서피어라이트(serpierite)와 석고로 동일하고, 석고의 함량이 달라 특징이 다르게 나타난다. GJG-5는 연한 청색과 진한 청색의 광물들이 혼합된 겔(gel)상으로 하이드로우드워다이트(hydrowoodwardite), 글로코세리나이트(glaucocerinite), 베체러라이트(bechererite), 서피어라이트와 석고로 구성된다. 국전광산에서 산출되는 6가지의 녹-청색 광물들은 Cu:Zn 비, (Si+Al) 함량 및 Si:Al 비, Ca 함량 등에 의해 구분될 수 있으며, 각 광물들의 형성 환경은 주변 유체 내에서 이와 같은 지화학적 요인들에 의하여 조절된 것으로 사료되고, 추가적인 연구를 통해 정확한 형성 환경을 밝혀낼 수 있을 것으로 기대된다. 본 연구에서 확인된 서피어라이트, 글로코세리나이트, 베체러라이트 등의 수화황산염 광물들은 국내에서 최초로 보고되며, 해외에서도 보고된 사례가 매우 적어 광물학적으로 큰 의의가 있다.

Keywords

JOHGB2_2018_v51n6_473_f0001.png 이미지

Fig. 1. Classification of green-blue coloured minerals from the Gukjeon mine into five groups (GJG) according to their occurrence and mineral assemblages. GJG-2, 3, 4 were obtained at the same outcrop.

JOHGB2_2018_v51n6_473_f0002.png 이미지

Fig. 2. X-ray diffraction patterns of five green-blue coloured mineral groups.

JOHGB2_2018_v51n6_473_f0003.png 이미지

Fig. 3. SEM images and EDS spectra of brochantite, schulenbergite, and serpierite from the Gukjeon mine. (A-C) brochantite, (D-F) schulenbergite, (G-I) serpierite.

JOHGB2_2018_v51n6_473_f0004.png 이미지

Fig. 4. SEM images and EDS spectra of hydrowoodwardite, glaucocerinite, and bechererite from the Gukjeon mine. (A, B) hydrowoodwardite, (C, D) glaucocerinite, (E, F) bechererite.

JOHGB2_2018_v51n6_473_f0005.png 이미지

Fig. 5. Ternary diagram of CuO-ZnO-(Al2O3+SiO2+CaO) contents of green-blue coloured minerals from the Gukjeon mine.

Table 1. Representative chemical composition (wt.%) and empirical formula of brochantite from the Gukjeon mine using EDS quantitative analyses

JOHGB2_2018_v51n6_473_t0001.png 이미지

Table 2. Representative chemical composition (wt.%) and empirical formula of schulenbergite from the Gukjeon mine using EDS quantitative analyses

JOHGB2_2018_v51n6_473_t0002.png 이미지

Table 3. Representative chemical composition (wt.%) and empirical formula of serpierite from the Gukjeon mine using EDS quantitative analyses

JOHGB2_2018_v51n6_473_t0003.png 이미지

Table 4. Colour and mineral assemblage of five green-blue coloured mineral groups

JOHGB2_2018_v51n6_473_t0004.png 이미지

References

  1. Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C. (Eds.) (2006) Handbook of Mineralogy. Mineralogical Society of America, Chantilly, VA 20151-1110, USA. http://www.handbookofmineralogy.org/.
  2. Braithwaite, R.S.W. (1982) Wroewolfeite in Britain. Mineralogical Record, v.13, p.167-174.
  3. Braithwaite, R.S.W. and Knight, J.R. (1968) Serpierite from Ecton, Staffordshire. Mineralogical Magazine, v.36, p.882. https://doi.org/10.1180/minmag.1968.036.282.23
  4. Brideges, T.F. (1987) Serpierite and devilline from the Northern Pennine Orefield. Proceedings of the Yorkshire Geological Society, v.46, no.2, p.169. https://doi.org/10.1144/pygs.46.2.169
  5. Cook, R.B. (2009) Brochantite Blanchard Mine, Bingham, New Mexico, Rocks & Minerals, v.84, no.1, p.48-53. https://doi.org/10.3200/RMIN.84.1.48-53
  6. Garcia-Guinea, J., Furio, M., Sanchez-Moral, S., Jurado, V., Correcher, V. and Saiz-Jimenez, C. (2015) Composition and spectra of copper-carotenoid sediments from a pyrite mine stream in Spain. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v.135, p.203-210. https://doi.org/10.1016/j.saa.2014.07.017
  7. Gazquez, F., Rull, F., Medina, J., Calaforra, J.M., Forti, P., De Waele, J., Venegas, G. and Sanz, A. (2013a). Glaucocerinite forming gours in Su Zurfuru Mine (Sardinia, Italy). Revista de la Sociedad Espanola de Mineralogia, v.17, p.53-54.
  8. Giester, G. and Rieck, B. (1996) Bechererite, (Zn,Cu) 6Zn2(OH)13[(S,Si)(O,OH)4]2, a novel mineral species from the Tonopah-Belmont mine, Arizona. Americal Mineralogist, v.81, p.244-248. https://doi.org/10.2138/am-1996-1-230
  9. Hodenberg, R.V., Krause, W. and Tauber, H. (1984) Schulenbergite, $(Cu,Zn)_7(SO_4,CO_3)_2(OH)_{10}{\cdot}3H_2O$, a new mineral. Neues Jahrbuch Fur Mineralogie, Monatshefte, p.17-24.
  10. Hong, S.H. and Choi, P.Y. (1988) Geological report ofthe Yucheon sheet (scale 1:50,000). Korea Institute of Energy and Resources.
  11. IMA (International Mineralogical Association) (2018) The New IMA List of Minerals - A Work in Progress - Updated: March 2018. 211p.
  12. Jeong, G.Y., Cho, H.G. and Do, J.Y. (2018) Occurrence and Mineralogical Propertiesof Green-Blue Inorganic Pigments in Korea. Korea. Journal of the Mineralogical Society of Korea, v.31, no.1, p.33-46. https://doi.org/10.9727/jmsk.2018.31.1.33
  13. Kim, C.-M., Jeong, J.O., Gu, D. and Han, R. (2017) Identification of materials in principal slip zones of faults by X-ray diffraction analysis using a small amount of sample. Journal of the Geological Society of Korea. v.53, no.6, p.873-883. https://doi.org/10.14770/jgsk.2017.53.6.873
  14. Kim, K.B. and Hwang, S.G. (1988) Geological report of the Miryang sheet (scale 1:50,000). Korea Institute of Energy and Resources.
  15. Kingsbury, A.W.G. and Hartley, J. (1957) Serpierite from the Lake District. Mineralogical Magazine, v.31, p.604-605. https://doi.org/10.1180/minmag.1957.031.238.07
  16. Kojiro, T., Yamada, T., Kikukawa, M. and Hirama, T. (1999) Minerals from Mikawa Mine, Niigata Prefecture. Quartz (Journal of the Friends of Mineral, Tokyo), v.12, p.9-16.
  17. KORES (Korea Resources Corporation) (1979) Mineral deposits of Korea. KORES.
  18. KORES (Korea Resources Corporation) (1981) Mineral deposits of Korea. KORES.
  19. Kwak, J.Y., Kang, C.W., Joo, S.Y., Jeong, J.H. and Choi, J.B. (2015) Occurrence of Zn-Pb Deposits in Danjang- Myeon, Milyang Area. Korea. Journal of the Mineralogical Society of Korea, v.28, no.3, p.279-292. https://doi.org/10.9727/jmsk.2015.28.3.279
  20. Livingstone, A., Bridges, T.F. and Bevins, R.E. (1990) Schulenbergite and namuwite from Smallcleugh mine, Nenthead, Cumbria. Journal of the Russell Society, v.3, p.23-24.
  21. Livingstone, A., Jackson, B. and Davidson, P.J. (1992) The zinc analogue of schulenbergite, from Ramsbeck, Germany. Mineralogical Magazine, v.56, p.215-219. https://doi.org/10.1180/minmag.1992.056.383.07
  22. Livingstone, A., Macpherson, H.G. and Jackson, B. (1976) Wroewolfeite and other langite-group minerals from Blackcraig, Kircudbrightshire. Mineralogical Magazine, v.40, p.893-894. https://doi.org/10.1180/minmag.1976.040.316.12
  23. Mason, J.S. and Green, D.I. (1995) Supergene minerals including exceptional ramsbeckite from Penrhiw Mine, Ystumtuen, Dyfed. UK Journal of Mines & Minerals, v.15, p.21-27.
  24. Mumme, W.G., Sarp, H. and Chiappero, P.J. (1994) A note on the crystal structure of schulenbergite. Archives des Sciences (Geneve), v.47, p.117-124.
  25. NRICH (National research Institute of Cultural Herigate) (2017) Investigation and Analysis of Traditional Pigment Minerals of Dancheong. NRICH, 295p.
  26. Ohnishi, M., Kusachi, I., Kobayashi, S. and Yamakawa, J. (2007) Mineral chemistry of schulenbergite and its Zn-dominat analogue from the Hirao mine, Osaka, japan. Journal of Mineralogical and Petrological Sciences, v.102, p.233-239. https://doi.org/10.2465/jmps.061130
  27. Ohnishi, M., Shimobayashi, N. and Kobayashi, S. (2012) Chemical composition of hydrowoodwardite from the Dogamaru mine, Shimane Prefecture and the Oike mine, Shiga Prefecture, Japan. Japanese Magazine of Mineralogical and Petrological Sciences, v.41, p.122-128. https://doi.org/10.2465/gkk.120329
  28. Ohinishi, M., Shirakami, M. and Yoshimura, T. (2001) Secondary minerals from the Hirao Old Mine, Onsencho, Minoo City, Osaka Prefecture, Japan, Chigaku Kenkyu, v.50, p.137-159.
  29. Okamoto, H., Morimoto, K., Anraku, S., Sato, T. and Yoneda, T. (2010) A novel remediation method learnt from natural attenuation process for Cu- and Znbearing wastewater. Clay Science, v.14, p.203-210.
  30. Russell, A. (1927) Notice of an occurrence of niccolite and ullmannite at the Settlingstone mine, Fourstones, Northumberland; and of serpierite at Ross Island mine, Killarney, Co. Kerry, Ireland. Mineralogical Magazine, v.21, p.383-387.
  31. Sabelli, C. and Zanazzi, P.F. (1968) The Crystal Structure of Serpierite, Acta Crystalographica, v.24, p.1214-1221. https://doi.org/10.1107/S0567740868004000
  32. Sabelli, C. and Zanazzi, P.F. (1972) The crystal structure of devillite. Acta Crystallographica, v.28, p.1182-1189. https://doi.org/10.1107/S0567740872003929
  33. Sarp, H. (1985) Orthoserpierite $Ca(CuZn)_4(SO_4)_2(OH)_6{\cdot}3H_2O$, un nouveau-mineral de la Mine de Chessy, France, polymorphe de la serpierite. Swiss Bulletin of Mineralogy and Petrology, v.65, p.1-7.
  34. Watanabe, H., Tazaki, K., Islam, A.B.M.R. and Chaerun, S.K. (2003) Copper biomineralization with banded structure at Dogamaru mine, Shimane Prefecture, Japan. In Water and Solid Environments: Microorganisms paly an important role (Tazaki, K. Ed.). Kanazawa University Press, Kanazawa, p.91-140.
  35. Yang, C.M. and Choi, J.B. (2010) Occurrence of the Pb-Zn Skarn Deposits in Gukjeon Mine, Korea. Journal of the Mineralogical Society of Korea, v.23, no.4, p.413-428.
  36. You, K. S. (2013) A Study on paints producing centers supply and demand environment of Chosun dynasty color pigment. Journal of Korean Society of Color Studies, v.27, p.27-37.
  37. Zaharia, L. (2003) Serpierite Ca(Cu,Zn)4(OH)6(SO4)2${\cdot}$3H2O - The first occurrence in Romania. Studia Universitatis Babes-Bolyai, Geologia, v.48, no.1, p.77-84. https://doi.org/10.5038/1937-8602.48.1.7
  38. Zittlau, A.H., Shi, Q., Boerio-Goates, J., Woodfield, B.F. and Majzlan, J. (2013) Thermodynamics of the basic copper sulfates antlerite, posnjakite, and brochantite. Chemie der Erde, v.73, p.39-50. https://doi.org/10.1016/j.chemer.2012.12.002