Hydrochemical and Isotopic Characteristics, and Origin of Noble Gas for Low-temperature Hot Spring Waters in the Honam Area

호남지역 저온형 온천수의 수리지화학적 및 안정동위원소 특성과 영족기체의 기원에 관한 연구

  • Jeong, Chan-Ho (Department of Geotechnical Design Engineering, Daejeon University) ;
  • Hur, Hyun-Sung (Department of Science Education, Ehwa Woman University) ;
  • Nagao, Keisuke (Laboratory for Earthquake of Chemistry, Graduate School of Science, University of Tokyo) ;
  • Kim, Kyu-Han (Department of Science Education, Ehwa Woman University)
  • 정찬호 (대전대학교 지반설계정보공학과) ;
  • 허현성 (이화여자대학교 과학교육학과) ;
  • ;
  • 김규한 (이화여자대학교 과학교육학과)
  • Published : 2007.10.28

Abstract

Geochemical composition, stable isotopes $({\delta}^{18}O,\;{\delta}D,\;{\delta}^{34}S)$ and noble gases(He, Ne and Ar) of nine hot spring water and three groundwater for five hot springs(Jukam, Hwasun, Dokog, Jirisan, Beunsan) from the Honam area were analyzed to investigate the hydrogeochemical characteristics and the hydrogeochemical evolution of the hot spring waters, and to interpret the source of sulfur, helium and argon dissolved in the hot spring waters. The hot spring waters show low water temperature ranging from 23.0 to $30.5^{\circ}C$ and alkaline characteristics of pH 7.67 to 9.98. Electrical conductivity of hot spring waters is $153{\sim}746{\mu}S/cm$. Groundwaters in this area were characterized by the acidic to neutral pH range$(5.85{\sim}7.21)$, the wide electrical conductivity range $(44{\sim}165{\mu}S/cm)$. The geochemical compositions of hot spring and groundwaters can be divided into three water types: (1) $Na-HCO_3$ water type, (2) Na-Cl water type and (3) $Ca-HCO_3$ water type. The hot spring water of $Ca-HCO_3$ water type in early stage have been evolved through $Ca(Na)-HCO_3$ water type into $Na-HCO_3$ type in final stage. In particular, Jurim alkaline(pH 9.98) hot spring water plotted at the end point of $Na-HCO_3$ type in the Piper diagram is likely to arrive into the final stage in geochemical evolution process. Hydrogen and oxygen isotopic data of the hot spring water samples indicate that the hot spring waters originated from the local meteoric water showing latitude and altitude effects. The ${\delta}^{34}S$ value for sulfate of the hot spring waters varies widely from 0.5 to $25.9%o$. The sulfur source of most hot spring waters in this area is igneous origin. However, The ${\delta}^{34}S$ also indicates the sulfur of JR1 hot water is originated from marine sulfur which might be derived ken ancient seawater sulfates. The $^3He/^4He\;and\;^4He/^{20}Ne$ ratios of the hot spring waters range from $0.0143{\times}10^{-6}\;to\;0.407{\times}10^{-6}\;and\;6.49{\sim}584{\times}10^{-6}$, respectively. The hot spring waters are plotted on the mixing line between air and crustal components. It means that the He gas in the hot spring waters was mainly originated from crustal sources. However, the JR1 hot spring water show a little mixing ratio of the helium gas of mantle source. The $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range from $292.3{\times}10^{-6}\;to\;304.1{\times}10^{-6}$, implying the atmospheric argon source.

이 연구에서는 호남지역에 분포하는 5개 온천(죽림, 변산, 지리산, 덕산, 화순)에서 9개 온천시료와 인근의 지하수 시료 3개를 채취하여 수질화학 성분과 안정동위원소 $({\delta}^{18}O,\;{\delta}D,\;{\delta}^{34}S)$ 및 영족기체(He, Ne, Ar) 동위원소 분석을 통하여 온천수의 지화학적 특성, 지화학적 진화, 그리고 황, 헬륨, 아르곤의 기원을 해석하고자 하였다. 호남지역 온천수의 수온은 $23.0{\sim}30.5^{\circ}C$ 범위로 저온형 온천특성을 보이고 pH는 $7.67{\sim}9.98$ 범위로 알카리성의 특성을 보여주었다. 전기전도도는 $153{\sim}746{\mu}S/cm$ 범위로 지역에 따라서 큰 차이를 보여주었다. 온천주변 지하수의 수질특성은 온천수보다 낮은 pH와 전기전도도의 특성을 보여주었다. 온천수와 지하수의 지화학적 성분은 파이퍼도상에서 크게 3개의 유형으로 구분된다($Na-HCO_3$ 유형, Na-Cl 유형, $Ca-HCO_3$ 유형). 온천수의 지화학적 진화과정을 보면 초기에 $Ca-HCO_3$ 유형에서 출발하여 $Ca(Na)-HCO_3$ 유형을 거쳐 $Na-HCO_3$ 유형으로 진화하였으며, 일부 온천수는(JR1)의 경우 pH 9.98의 알카리성으로, $Na-HCO_3$ 유형의 종말점까지 도달하여 지화학적 진화의 최종단계에 도달되었음을 보여준다. 온천수의 산소 및 수소동위원소 조성은 순환수선을 따라 도시되며 지역에 따라 위도효과를 보인다. 황산염에 대한 황동위원소 대부분 화성기원을 보인다. 그러나 JR1 온천은 고염수에서 기원한 것으로 보이는 해양성기원을 보인다. 온천수의 $^3He/^4He$ 비와 $^4He/^{20}Ne$ 비는 $0.0143{\times}10^{-6}{\sim}0.407{\times}10^{-6}$ 범위와 $6.49{\sim}584{\times}10^{-6}$ 범위를 각각 보여주어 대기와 지각성분의 혼합선상에 도시된다. 이는 온천수내 헬륨가스의 대부분이 지각기원임을 의미한다. 죽림온천(JR1)의 경우 맨틀기원의 헬륨가스의 혼합율이 다른 온천에 비해 다소 높은 비율을 보여준다. 이들 동위원소비와 온천수의 pH와는 대체적으로 정의 상관관계가 확인되었다. 아울러 $^{40}Ar/^{36}Ar$비가 $292.3{\times}10^{-6}{\sim}304.1{\times}10^{-6}$ 범위로 대기기원임을 지시한다.

Keywords

References

  1. Aka, F.T., Kusakabe, M., Nagao, K. and Tanyileke, G., (2000). Noble gas isotopic compositions and water/gas chemistry of soda springs from the islands of Bioko, So Tom and Annobon, along with Cameroon Volcanic Line, West Africa. App. Geochem., v. 16, p. 323-338 https://doi.org/10.1016/S0883-2927(00)00037-8
  2. Coleman, M.L., Shepherd, T.J., Durhham, J.J., Rouse, J.E. and Moore, G.R. (1982) Reduction of water with zinc for hydrongen isotope analysis. Anal. Chem., v. 54, p. 993-995 https://doi.org/10.1021/ac00243a035
  3. Craig, H. (1961) Isotopic variations in meteoric water, Science, v. 133, p. 1702-1703 https://doi.org/10.1126/science.133.3465.1702
  4. Epstein, S. and Mayeda, T.K. (1953) Variation of the $O^{18}/O^{16}$ ratio in natural waters. Geochim. Cosmochim. Acta, v. 4, p. 213-224 https://doi.org/10.1016/0016-7037(53)90051-9
  5. Hem, J.D. (1992) Study and interpretation of the chemical characteristics of natural water, 4rd ed., US Government printing office, Washington, 326p
  6. Jeong, C.H., Kim, T.K., Kim, C.S. and Kim, S.J. (1997) Reaction path modelling on geochemical evolution of groundwater and formation of secondary minerals in water-gneiss reaction system. J. Minr. Soc. Korea, v. 10, p. 33-44
  7. Jeong, C.H., Nagao, K., Kim, K.H., Park, J.S., Sumino, H. and Ahan, S.W. (2006a) Geochemical evolution of Magumsan and Bugok geothermal waters in South Korea: Interrelationship among chemical composition, stable isotopes and noble gas isotopes. Annual Meeting of the society of resource geology in Japan, Tokyo University, p 23
  8. Jeong, C.H., Nagao, K., Kim K.H., Sumino, H., Park, J.S., Lee, J.I., Hur, S.D., Koh. Y.K., Choi, H.K., Ahn, S.W., Hur, H.S. and Park, C.H. (2006b) Geochemical evolution, heat source and noble gas of hot spring, geothermal water and geological environment, 22th joint symposium of KSEEG and KSG, p. 119-136
  9. Jeong, C.H., Park, J.S., Nagao, K., Sumino, K., Kim, K.H., Hur, S.D., Lee, J.I., Koh, Y.K. and Park, C.H. (2004) Hydrochemistry and origin of noble gases of hot spring water in Korea : Daejeon-Chungcheong area. annual meeting(autumn season) of KoSSGE, p. 115-118
  10. Joe, B.U., Yun, U. and Song, Y.H. (2006) Hydrogeochemistry of deep geothermal water in Heunghae, Pohang by pumping test. J. of Kor. Soc. soil and groundwater environ., v. 11, p. 20-30
  11. Kaplan, I.R. (1975). Stable isotopes as a guide to biogeochemical processes. Proc. R. Soc. London, v. 189, p. 183-211
  12. Kendall, C. and Coplen, T.B. (1985) Multi-sample conversion of water to hydrogen by zinc for stable isotope determination. Anal. Chem. v. 57, p. 1438-1440 https://doi.org/10.1021/ac00290a806
  13. Kim, B.K. and Park, B.K. (1966) Explanatory note of the Dongbok sheet (1:50,000), Korea national geologic survey, 33p
  14. Kim, G.Y., Koh. Y.K., Kim, C.S., Bae, D.S. and Park, M.E. (2000) Geochemical studies of geothermal waters in Yusung geothermal area, J. of Kor. soc. of groundwater and environ. v. 7, p. 32-46
  15. Kim, K.H. and Nakai, N. (1981). A study on hydorgen, oxygen and sulfur isotopic ratios of the hot spring waters in South Korea. Geochem. Jour. v. 15, p. 6-16
  16. Kim, K.H. and Nakai, N. (1988) Isotopic composition of precipitation and groundwaters in south Korea. J. of the Geological Soc. of Korea, v. 24, p. 39-46
  17. Koh, Y.K., Kim, C.S., Bae, D.S. and Lee, D.I. (2000) Hydrochemistry and environmental isotope studies of the deep groundwater in the Munkyeong area. Eco. envrion. geo., v. 33, p. 469-489
  18. Koh, Y.K., Yun, S.T., Kim, C.S., Bae, D.S. and Park, S.S. (2001) Geochemical evolution and deep environment of geothermal waters in the Bugok area: reconstruction on the origin of sulfate-type geotherma water. Eco. envrion. geo., v. 34, p. 329-343
  19. Koh, Y.K., Yun, S.T., Kim, C.S., Choi, H.S. and Kim, K.Y. (1999) Geochemical evolution of $CO_{2}$-rich groundwater in the Jungwon area. Eco. envrion. geo., v. 32, p. 469-483
  20. Kusakabe, M., Ohwada, M., Satake, H., Nagao, K. and Kawasaki, I. (2003) Helium isotope ratios and geochemistry of volcanic fluids from the Norikura Volcanic Chain, central. Economic Geologists, v. 10, p. 75-89
  21. Lee, B.J., Kim, J.C., Kim, Y. B., Cho, D.R., Choi, H.I., Jeon, H.Y. and Kim, B.C. (1997) Explanatory note of the Gwangju sheet, Korea resource research institute, 82p
  22. Lee, J.R. (2003) A study on hydrogeology of Hwasun hot spring in Jeonnam Province, Busan University MS thesis, 75p
  23. Matsuda, J., Amari, S. and Nagao., (1999) Purely physical separation of a small fraction of the Allende meteorite highly enriched in noble gases. Meteoritics and Planet. Sci., v. 34, p. 126-136
  24. Na, C.K. Lee, M.S., Lee, I.S., Park, H.Y. and Kim, O.B. (1997) Hydrochemical and isotopic properties of the thermal spring water from Chonju Jurim district, Korea, Econ, Environ. Geol, v. 30, p. 25-33
  25. Nagao, K., Okazaki, R., Sawada, S. and Nakamura, N., (1999) Noble gases and K-Ar ages of five Rumuruti chondrites Yamato(Y)-75302, Y-791827, Y-793575, Y-82002, and Asuha-881988. Antarct. Meteorite Res., v. 12, p. 81-93
  26. Nakamura, T., Nagao K., Metzler, K. and Takaoka, N., (1999). Heterogeneous distribution of solar and cosmogenic noble gases in CM chondrites and implications for the formation of CM parent bodies. Geochim. Cosmochim. Acta, v. 63, p. 257-273 https://doi.org/10.1016/S0016-7037(98)00278-6
  27. Nordstrom, D.K., Limdblom, S., Donahoe, R.J. and Barton, C.C. (1989) Fluid inclusions in the Stripa granite and their possible influence on the groundwater chemistry. Geochim. Cosmochim. Acta, v. 53, p. 1741-1755 https://doi.org/10.1016/0016-7037(89)90295-0
  28. Okazaki, R., Takaoka, N., Nagao, K., Sekiya, M. and Nakamura, T. (2001) Nobles gas-rich chondrules in an enstatite chondrites. Nature, v. 412, p. 795-798 https://doi.org/10.1038/35090520
  29. Osawa, T. and Nagao, K. (2002a) On law noble gas concentrations in Antarctic micrometeorites collected from Kuwagata Nunatak in the Yamate meteorite ice field. Antarct. Meteorite Res., v. 15, p. 165-177
  30. Osawa, T. and Nagao, K. (2002b) Nobles gas compositions of Antarctic micrometeorites collected at the Dome Fuji Station in 1996 and 1997. Meteorit. Planet. Sci., v. 37, p. 911-936 https://doi.org/10.1111/j.1945-5100.2002.tb00867.x
  31. Osawa, T., Nagao, K., Nakamura, T. and Takaoka, N. (2000) Nobles gas measurement in individual micrometeorites using laser gas-extraction system. Antarctic Meteorite Res., v. 13, p. 322-341
  32. Paik, I.S., Kim, H.J., Lee, J.D., Kim, I.S., Kim, J.S. and Moon, B.C. (2000) Comparative sedimentology for the lacustrine deposits of the Upper Gyeongsang Supergroup in the Southeastern Gyeongsang basin, Korea. J. of Korean Earth Science society, v. 21, p. 423-436
  33. Piper, A. M. (1994). A graphic procedure in the geochemical interpretation of water analyses. Transactions of American Geophysical Union, v. 29, p. 413-421
  34. Savage, D., Cave, M.R., Milodowski, A.E. and Geoge, I. (1987) Hydrothermal alteration of granite by meteoric fluid: an example from the Carnmellis granite, united Kingdom. Contri. Miner. Petrol, v. 96, p. 391-405 https://doi.org/10.1007/BF00371257
  35. Schidlowski, M., Hayes, J.M. and Kaplan, I.R. (1983). Isotopic inferences of ancient biochemistries: carbon, sui-fur, hydrogen, nitrogen, In: Schopf, J.W.(ed) Earth's earliest biosphere: Its origin and evolution. Princeton Univ. Press, p. 149-186
  36. Song, Y.H., Kim, H.C. and Lee, S.K. (2006) Geothermal research and development in Korea, Eco. envrion. geo., v. 39, p. 485-494
  37. Sung, K.Y., Park, M.E., Koh, Y.K. and Kim, C.S. (2001) Evolution and origin of the geothermal waters in the Busan area, Korea: I. cooling and dilution by groundwater mixing after heated sea water-rock interaction, Eco. envrion. geo., v. 34, p. 447-460
  38. Yanaglsawa, F. and Sakai, H. (1983) Thennal decomposition of bahum sulfate-vanadium pentaoxide-silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements, Anal. Chem, v. 55, p. 985-987 https://doi.org/10.1021/ac00257a046
  39. Yun, S.T., Koh, Y.K., Kim, C.S. and So, C.S. (1998) Geochemistry of geothermal waters in Korea: Environmental isotope and hydrochemical characteristics, I. Bugok area. Econ. Environ. Geol., v. 31, p. 185-199
  40. Yun, U. and Joe, B.U. (2005) Geochemistry of geothermal zone in Heunghae area, J. of Kor. soc. of soil and groundwater enviro., v. 10, p. 45-55