• Title/Summary/Keyword: Substrate-heating

Search Result 355, Processing Time 0.023 seconds

Fabrication of Solid Oxide Fuel Cells with Electron Beam Physical Vapor Deposition: I. Preparation of Thin Electrolyte Film of YSZ (전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조 : I. YSZ 박막 전해질의 제조)

  • Kim, Hyoungchul;Koo, Myeong-Seo;Park, Jong-Ku;Jung, Hwa-Young;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.85-91
    • /
    • 2006
  • Electron Beam Physical Vapor Deposition (EB-PVD) was applied to fabricate a thin film YSZ electrolyte with large area on the porous NiO-YSZ anode substrate. Microstructural and thermal stability of the as-deposited electrolyte film was investigated via SEM and XRD analysis. In order to obtain an optimized YSZ film with high stability, both temperature and surface roughness of substrate were varied. A structurally homogeneous YSZ film with large area of $12\times12\;cm^2$ and high thermal stability up to $900^{\circ}C$ was fabricated at the substrate temperature of $T_s/T_m$ higher than 0.4. The smoother surface was proved to give the better film quality. Precise control of heating and cooling rate of the anode substrate was necessary to obtain a very dense YSZ electrolyte with high thermal stability, which affords to survive after post heat treatment for fabrication a cathode layer on it as well as after long time operation of solid oxide fuel cell at high temperature.

Structure of epitaxial MgO layers on TiC(001) studied by time-of-flight impact-collision ion scattering spectroscopy (비행시간형 직충돌 이온산란 분광법을 사용한 TiC(001)면에 성장된 MgO막의 구조해석)

  • Hwang, Yeon;Souda, Ryutaro
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.181-186
    • /
    • 1997
  • Time-of-flight impact-collision ion scattering spectroscopy (TOF-ICISS) was applied to study the geometrical structure of epitaxially grown MgO layers on a TiC(001). The hetero-epitaxial MgO layer was able to be deposited by thermal evaporation of magnesium onto the TiC(001) surface and subsequent exposure of oxygen at room temperature. A slight heating of the substrate at around $300^{\circ}C$ was necessary to overcome a thermal barrier for the ordering. The well-ordered MgO structure was confirmed with the 1$\times$1 LEED pattern. TOF-ICISS was useful in studying interface structure between oxide and substrate. The results revealed that the MgO layer is formed at the on-top sites of the TiC(001) substrate and the lateral lattice constant of MgO layer is the same as that of the TiC substrate. The MgO was deposited within two layers on the most parts of the surface.

  • PDF

Effects of Seed Layers on Formation of Barium Ferrite Thin Films and Their Magnetic Properties (씨앗층이 바륨훼라이트 박막의 형성과 자기적 성질에 미치는 영향)

  • 나종갑;이택동;박순자
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.22-28
    • /
    • 1992
  • Barium ferrite thin films were reactively deposited with Fe and BaO composite targets by a facing tergects sputtering unit. When thermally oxidized silicon wafers were used as substrates, minimum substrate heating of $750^{\circ}C$ was necessary for the perfect c-axis alignment in barium ferrite films. To lower the critical substrate temperature for the good c-axis alignment, such seed layers as ZnO, ${\alpha}-Fe_{2}O_{3}$ and ${\gamma}-Fe_{2}O_{3}$ were tested. The excellent c-axis algnment of BaM was obtained at a substrate temperature of $600^{\circ}C$ on ZnO seed layer whose (002) plane was parallel to the substrate surface. The magnetic properties of the BaM film showed saturation magnetization of 295 emu/cc, perpendicular coercivity of 1.7 kOe and squareness of 0.75. Optimum deposition rate of $230\;{\AA}/min$ was obtained with the composite target and this was 5 to 20 times higher than those of other investigators with oxide targets.

  • PDF

Electrical and Optical Properties of Vacuum-Evaporated CdS Films for the Window Layer of $CdS/CuInSe_2$ Solar Cells. ($CdS/CuInSe_2$태양전지의 Window Layer로 쓰이는 CdS박막의 진공증착법에 따른 전기적.광학적 성질)

  • Nam, Hee-Dong;Lee, Byung-Ha;Park, Sung
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 1997
  • 1μm-CdS films for a window layer of CdS/CuInSe2 solar cell have been prepared by vacuum of 1x10-3 mTorr. Source and substrate temperature ranges were used 800-1100'C and 50-200℃ respectively. Structural, electircal and optical properties of CdS films have been investigated by X-ray diffractometer (XRD), scanning electron microscopy (SSEM), electrical resistivity, the Hall measurement and optical transmission spectra. Electrical resistivity and optical transmission of the CdS films decreased with the increase in CdS source temperature without substrate heating. All the films had hexagonal structure and strong texture with (002) orientation of grain normal to the substrate glass. CdS films evaporated at 1000℃ were the highest electrical conductivity of 0.9(S/cm). Electrical resistivity and optical transmission at the substrate temperature of 100℃ were 40(Ω,cm) and 80% respectively.

  • PDF

Coating behavior of zirconia film fabricated by granule spray in vacuum (상온진공 과립분사에 의한 지르코니아 필름의 코팅거동)

  • Tungalaltamir, Ochirkhuyag;Kang, Young-Lim;Park, Woon-Ik;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • The Granule Spray in Vacuum (GSV) process is a method of forming a dense nanostructured ceramic coating film by spraying ceramic granules on a substrate at room temperature in a vacuum. In the Granule Spray, the granules made by agglomerating particles with the size from submicrometer to micrometer can be sprayed into the substrate. Once the granules were squashed upon collision with the substrate, they become several dozens of nanometer-sized crystals in vacuum process. The zirconia of the monoclinic phase transform into tetragonal phase at 1150℃. At this time, its volume is changed by about 6.5 %. For this reason, it is widely held that it is difficult to acquire a compact of monoclinic zirconia sinter. In this study, the effect of particle treatment temperature and standoff distance on the substrate of zirconia granules were investigated in GSV. Also, particle treatment temperature, standoff distance, coating efficiency, and microstructure of the film were considered in forming the monoclinic zirconia coating film in GSV without any heating process. The deposited films exhibited monoclinic zirconia phase without any other detectable phase by X-ray diffractometer (XRD).

Fabrication and Electrical Insulation Property of Thick Film Glass Ceramic Layers on Aluminum Plate for Insulated Metal Substrate (알루미늄 판상에 글라스 세라믹 후막이 코팅된 절연금속기판의 제조 및 절연특성)

  • Lee, Seong Hwan;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • This paper presents the fabrication of ceramic insulation layer on metallic heat spreading substrate, i.e. an insulated metal substrate, for planar type heater. Aluminum alloy substrate is preferred as a heat spreading panel due to its high thermal conductivity, machinability and the light weight for the planar type heater which is used at the thermal treatment process of semiconductor device and display component manufacturing. An insulating layer made of ceramic dielectric film that is stable at high temperature has to be coated on the metallic substrate to form a heating element circuit. Two technical issues are raised at the forming of ceramic insulation layer on the metallic substrate; one is delamination and crack between metal and ceramic interface due to their large differences in thermal expansion coefficient, and the other is electrical breakdown due to intrinsic weakness in dielectric or structural defects. In this work, to overcome those problem, selected metal oxide buffer layers were introduced between metal and ceramic layer for mechanical matching, enhancing the adhesion strength, and multi-coating method was applied to improve the film quality and the dielectric breakdown property.

Photo-sintering of Silaver Nanoparticles using UV-LED

  • Lee, Jaehyeong;Kim, Minha;Kim, Donguk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.88.1-88.1
    • /
    • 2015
  • In recent printed electronics technology, Photo-Sintering, a technique for sintering materials using a light source, has attracted attention as an alternative to time-consuming high-temperature thermal processes. The key principle of this technique is the selective heating of a strongly absorbent thin film, while preventing the heating of the transparent substrate by the light source. Many recent studies have used a flash lamp as the light source, and investigated the material-dependent effect of the width or intensity of the pulsed light. However, the flash lamp for sintering is not suitable for industry yet, because of needing too high power to sinter for a large scale. In energy-saving and large-scale sintering, LED technologies would be very useful in the near future. In this work, we investigated a sintering process for silver nanoparticles using UV-LED array. Silver nanoparticles in ink were inkjet-printed on a $1{\times}1cm$ area of a PET film and photo-sintered by 365 nm UV-LED module. A sheet resistance value as low as $72.6m{\Omega}/sq$ (2.3 - 4.5 times that of bulk silver) was obtained from the UV-LED sintering at 300 mW/cm2 for 50 min.

  • PDF

Thermal Stress Due to a Hot - Spot on the Laminated Plate in High Temperature Superconducting Fault Current Limiter (적층판으로 제작된 고온초전도 한류기에 발생한 국부적 열폭주 점에 대한 열응력 해석)

  • Yang, Kyeong-Jin;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.705-712
    • /
    • 2003
  • Analysis for the thermal stress distribution in the laminated plates containing a hot-spot(local heating region) is performed. It is assumed that the local heating region induces only mechanical stress by the thermal expansion but effect of the thermal conduction is neglected. The region is regarded equivalent to a homogeneous inclusion expanding in a laminated medium. As an example, Au/YBCO/Al$_2$O$_3$laminate which is often employed for High Temperature Superconducting Fault Current Limiter(HTS FCL) has been analyzed. Effects of heat input, thickness of each layer and the got spot size upon the stress distribution in the hot-spot have been investigated. For a constant heat generation into the hot-spot, as the thickness of the Al$_2$O$_3$substrate increases, the stress in the YBCO layer is peculiarly oscillated, and the curvature of laminate has a maximum at a certain thickness of the Al$_2$O$_3$.

Thermal Analysis on Glass Backplane of OLED Displays During Joule Induced Crystallization Process (OLED 디스플레이 제작을 위한 Joule 유도 결정화 공정에서의 유리기판에 대한 열해석)

  • Kim, Dong-Hyun;Park, Seung-Ho;Hong, Won-Eui;Chung, Jang-Kyun;Ro, Jae-Sang;Lee, Seung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.797-802
    • /
    • 2009
  • Large area crystallization of amorphous silicon thin-films on glass substrates is one of key technologies in manufacturing flat displays. Among various crystallization technologies, the Joule induced crystallization (JIC) is considered as the highly promising one in the OLED fabrication industries, since the amorphous silicon films on the glass can be crystallized within tens of microseconds, minimizing the thermally and structurally harmful influence on the glass. In the JIC process the metallic layers can be utilized to heat up the amorphous silicon thin films beyond the melting temperatures of silicon and can be fabricated as electrodes in OLED devices during the subsequent processes. This numerical study investigates the heating mechanisms during the JIC process and estimates the deformation of the glass substrate. Based on the thermal analysis, we can understand the temporal and spatial temperature fields of the backplane and its warping phenomena.

Temperature Analysis for Optimizing the Configuration of the Linear Cell

  • Choi Jong-Wook;Kim Sung-Cho;Kim Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1089-1097
    • /
    • 2006
  • The market demand of display devices is drastically increasing in the information technology age. The research on OLED (Organic Light Emitting Diodes) display with the luminescence in itself is being more paid attention than LCD (Liquid Crystal display) with the light source from the back. The vapor deposition process is most essential in manufacturing OLED display. The temperature distribution of the linear cell in this process is closely related to securing the uniformity of organic materials on the substrate. This work analyzed the temperature distribution depending on the intervals between the crucible and the heating band as well as on the amount of the heat flux from the heating band. Moreover, the roles of the water jacket and the configuration of the cover within the linear cell were examined through the temperature analysis for six configurations of the linear cell. Under the above temperature analysis, the variations in the intervals and the amount of the heat flux were considered to have an effect on building the uniform temperature distribution within the crucible. It is predicted that the water jacket and the adequate configuration of the cover will prevent the blowout and clogging phenomena, respectively. The results can be used as the fundamental data for designing the optimal linear cell.