• Title/Summary/Keyword: Sub-Resonance

Search Result 523, Processing Time 0.025 seconds

Magnetic Property of BixCa1-xMnO3: Experimental and First Principles Calculation Study

  • Na, Sung-Ho;Kim, Dong-Jin
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The magnetic properties of ${Bi_x}{Ca_{1-x}}{MnO_3}$ for x = 0.12, 0.13, 0.14, 0.15, and 0.16 were examined by measuring magnetic susceptibility, resistivity and electron magnetic resonance at different temperatures. ${Bi_x}{Ca_{1-x}}{MnO_3}$ showed complicated magnetic structure that varies with temperature and composition, particularly around Bi composition x. 0.15. The aim of this study was to determine how the magnetic and physical properties of ${Bi_x}{Ca_{1-x}}{MnO_3}$ change in this region. In addition, first principles calculations of the magnetic phase of ${Bi_x}{Ca_{1-x}}{MnO_3}$ for x = 0, 0.125, 0.25 were carried out, and the spin state, electric and magnetic characteristics are discussed.

Synthesis of a small molecular cage consisting of three aminomethyl pyrroles and its selective fluoride recognition

  • Nam Jung, Heo;Hye Jin, Han;Jaewon, Choi;Sung Kuk, Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • A small cage-like molecule (2) composed of three aminomethyl pyrroles and two hexa-substituted benzenes has been prepared by reduction of its iminopyrrole analogue (1) using NaBH4. It was revealed by 1H NMR spectroscopic analyses that cage molecule 2 strongly binds the fluoride anion in polar DMSO-d6 relative to CDCl3. Compared to that of compound 1, the lowered affinity of 2 for the fluoride anion is attributable to its increased electron density resulting from the production of thesecondary amine groups.

The Effects of (Ba0.4Ca0.6)SiO3 Nano Spheroidization Glass Additives on the Microstructure and Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3 Ceramics

  • Choi, Cheal Soon;Kim, Ki Soo;Rhie, Dong Hee;Yoon, Jung Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1719-1723
    • /
    • 2014
  • In this study, the microwave dielectric properties of nano spheroidization glass powders added $Ba(Zn_{1/3}Ta_{2/3})O_3$ ceramics prepared by solid state reaction have been investigated. Adding $(Ba_{0.4}Ca_{0.6})SiO_3$ nano spheroidization glass powders could effectively promote the densification even in the case of decreasing the sintering temperature. When the glass frit is 0.3 wt% and sintering is carried out at a temperature of $1500^{\circ}C$ for 6 hr, a temperature stable microwave dielectric ceramic could be obtained, which has a dielectric constant (${\varepsilon}_r$) of 30.2, a quality factor ($Q{\times}f_0$) of 124,000 GHz and a temperature coefficient of resonance frequency (${\tau}_f$) of $2ppm/^{\circ}C$.

Cyclotron Resonance Line Widths in Wurtzite ZnO Structure under Circularly Oscillating Fields

  • Park, Jung-Il
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.4
    • /
    • pp.51-57
    • /
    • 2021
  • We study optical quantum transition line widths in relation to magnetic field dependence properties of the electrons confined in an infinite square well potential system between z = 0 and z = Lz in the z - direction. We consider two systems-one is subject to right circularly oscillating external fields and the other is subject to left circularly oscillatory external fields. Our results indicate that the line widths of right circularly oscillating external fields is larger than the line widths of left, while the opposite result is obtained for the line widths.

Piezoelectric and Dielectric Properties on PSN-PMN-PZT Composition according to CeO2 Addition (PSN-PMN-PZT 조성의 CeO2첨가에 따른 압전.유전특성 변화)

  • Yoon, Man-Soon;Chio, Yong-Gil;Ur, Soon-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.838-842
    • /
    • 2006
  • 0.03Pb$(Sb_{0.5}Nb_{0.5})O_{3}-0.03Pb(Mn{1/3}Nb{2/3)O_{3}-(0.94-x)PbTiO_{3}-xPbZrO_{3}$ ceramics doped with $CeO_{2}$ were synthesized by conventional bulk ceramic processing technique. Phases analysis, microstructures and piezoelectric properties were investigated as a function of $CeO_{2}$ content (0.03, 0.05, 0.1 0.3, 0.5 and 0.7 wt%). Microstructures and phases information were characterized using a scanning electron microscope (SEM) and an X-ray diffractometer (XRD). Mechanical quality factor ($Q_{m}$) and coupling factor(kp) were obtained from the resonance measurement method. Both $Q_{m}$ and $k_{p}$ were shown to reach to the maximum at 0.1 wt% $CeO_{2}$. In order to evaluate the stability of resonance frequency and effective electromechanical coupling factor ($K_{eff}$) as a function of $CeO_{2}$, the variation of resonance and anti-resonance frequency were also measured using a high voltage frequency response analyzer under various alternating electric fields from 10 V/mm to 80 V/mm. It was shown that the stability of resonance frequency and effective electromechanical coupling factor were increased with increasing the $CeO_{2}$ contents.

207Pb nuclear magnetic resonance study in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals

  • Yeom, Tae Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.107-114
    • /
    • 2018
  • In this exploration, the nuclear magnetic resonance of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ Single Crystals using FT-NMR spectrometer is investigated. The line width of the resonance line for the $^{207}Pb$ nucleus decreases as temperature increases due to motional narrowing. The chemical shift of $^{207}Pb$ NMR spectra also increases as temperature decreases for both crystals. The spinlattice relaxation times $T_1$ of $^{39}K$ nucleus were calculated as a function of temperature (180 K~400 K). The $T_1$ of $^{207}Pb$ nucleus decreases as temperature increases. The dominant relaxation mechanism at the studied temperature range can be deduced as the Raman process, which is the coupling between lattice vibrations and the nuclear spins. This deduction is substantiated by the fact that the nuclear spin-lattice relaxation rate $1/T_1$ of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystal is proportional to $T^2$, or temperature squared. The activation energies for the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystals are $E_a=49{\pm}1meV$ and $E_a=47{\pm}2meV$, respectively.

Improving Thermal Resisting Property of PZT Ceramics by Thermal Aging (열에이징에 의한 PZT세라믹스의 내열특성 개선)

  • Lee, Gae-Myung;Kim, Byung-Hyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • Temperature stabilities of resonance frequencies of the substrates are very important in piezoelectric ceramics oscillators and fitters. In this study, it was investigated thermal resisting property of the length-extensional vibration mode of PZT ceramics. The mode can be utilized in fabricating ultra-small 55 kHz IF devices. We fabricated the ceramic specimens with x = 0.51, 0.52, 0.53, 0.54, and 0.55 in the Pb(Zr$\sub$x/Ti$\sub$1-x/)O$_3$ system. And their resonance frequencies were measured before 1st thermal aging, after 1st and 2nd thermal aging. In order to investigate the influence of thermal aging on thermal resisting properties, thermally aged specimens were once mote thermally aged. Before 1st thermal aging, the specimens of the compositions with morphotropic phase, x = 0.53 and rhombohedral phase, x = 0.54 have weak thermal resisting property of resonance frequency, while tetragonal phase, x = 0.51 has robust thermal resisting property of resonance frequency. 1st thermal aging improved thermal resisting property of resonance frequency in all specimens.

Numerical Investigation of Multi-body Wave Energy Converters' Configuration

  • Heo, Kyeonguk;Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.132-142
    • /
    • 2022
  • We investigate the performance of multi-body wave energy converters (WECs). This investigation considers multiple scattering of water waves by the buoys of a WEC under the generalized mode approach. Predominantly, the effect of a WEC's configuration on its energy extraction is studied in this research. First, single-row terminator and single-column attenuator arrays of vertical cylinders have been studied. The performance of these attenuator arrays shows that the wall effect induced by the periodic buoys influences the wave propagation and energy extraction in these WECs. Further studies show that a single-row terminator array of vertical cylinders performs better than the corresponding single-column attenuator array. Subsequently, multi-row terminator arrays of vertical cylinders are investigated by conducting a parametric study. This parametric study shows that the hydrodynamic property of three resonance phenomena makes energy extraction efficiency drop down, and the magnitude of energy extracted oscillates between the resonance points in these WECs. Finally, a 4×8 terminator array of vertical cylinders is studied to determine the effect of various dx (x-directional distance between adjacent rows) within this WEC on its performance. In particular, this study enforces at least two equal dx values within the 4×8 terminator array of vertical cylinders. It shows that a small value of this dx leads to better energy extraction efficiency in some of these various dx arrays than that of a corresponding regular array with the same dx.

Characterization of Ag/TiO2 Nanoparticles Synthesis (Ag/TiO2미세입자 합성물의 특성 분석)

  • Kyungho Kang;Yonggi Jo;Sun-Geum Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.202-207
    • /
    • 2024
  • This study examines a manufacturing process for the photoelectrode material of dye-sensitized solar cell (DSSC) intending to increase efficiency through the surface plasmon resonance phenomenon of nanoparticles with a composite structure made of Ag and TiO2. This invention involves the use of Ag and TiO2 nanoparticles in the solar cell. These nanoparticles cause surface plasmon resonance, which amplifies and scatters incident solar energy, enhancing the dye's rate of light absorption. It also makes it possible to absorb energy in wavelength ranges that were previously difficult to do, which increases efficiency. Centrifugal separation and heat synthesis are used to create the composite metal structures, and certain combinations are used to decide the particle morphologies. To increase the efficiency of organic solar cells and DSSC, the Ag/TiO2 composite structure is therefore quite likely to be used.