DOI QR코드

DOI QR Code

207Pb nuclear magnetic resonance study in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals

  • Yeom, Tae Ho (Department of Laser and Optical Information Engineering, Cheongju University)
  • Received : 2018.11.08
  • Accepted : 2018.12.13
  • Published : 2018.12.20

Abstract

In this exploration, the nuclear magnetic resonance of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ Single Crystals using FT-NMR spectrometer is investigated. The line width of the resonance line for the $^{207}Pb$ nucleus decreases as temperature increases due to motional narrowing. The chemical shift of $^{207}Pb$ NMR spectra also increases as temperature decreases for both crystals. The spinlattice relaxation times $T_1$ of $^{39}K$ nucleus were calculated as a function of temperature (180 K~400 K). The $T_1$ of $^{207}Pb$ nucleus decreases as temperature increases. The dominant relaxation mechanism at the studied temperature range can be deduced as the Raman process, which is the coupling between lattice vibrations and the nuclear spins. This deduction is substantiated by the fact that the nuclear spin-lattice relaxation rate $1/T_1$ of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystal is proportional to $T^2$, or temperature squared. The activation energies for the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystals are $E_a=49{\pm}1meV$ and $E_a=47{\pm}2meV$, respectively.

Keywords

JGGMB2_2018_v22n4_107_f0001.png 이미지

Figure 1. Saturation recovery traces of the 207Pb nucleus in a PbWO4:Dy3+ single crystal as a function of delay time at 300 K.

JGGMB2_2018_v22n4_107_f0002.png 이미지

Figure 2. Typical NMR spectra of the 207Pb nucleus (a) in PbWO4:Mn2+ (b) in PbwO4:Dy3+ single crystals at several temperatures operating at ωo/2π = 83.538 MHz.

JGGMB2_2018_v22n4_107_f0003.png 이미지

Figure 3. Resonance frequency of the 207Pb nuclei in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals as a function of temperature. The zero point is the Larmor frequency 83.538 MHz.

JGGMB2_2018_v22n4_107_f0004.png 이미지

Figure 4. Peak to peak intensity of the 207Pb NMR line in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals as a function of temperature.

JGGMB2_2018_v22n4_107_f0005.png 이미지

Figure 5. Linewidth (FWHM) of the 207Pb NMR line in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals as a function of temperature.

JGGMB2_2018_v22n4_107_f0006.png 이미지

Figure 6. Magnetization recovery traces for 207Pb nuclei in PbWO4:Mn2+ and PbWO4:Dy3+ crystals. The curves are fitted with eq. (1).

JGGMB2_2018_v22n4_107_f0007.png 이미지

Figure 7. Temperature dependence of the spin-lattice relaxation rate 1/T1 for the 207Pb in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals. The solid line is fits obtained by assuming Raman processes.

JGGMB2_2018_v22n4_107_f0008.png 이미지

Figure 8. The spin-lattice relaxation time of the 207Pb nucleus vs. the reciprocal temperature in the experimental temperature region. The slope of the solid line represents the activation energy.

References

  1. Compact Muon Solenoid Technical Proposal, CERN/LHCC 94-38, LHCC, P1 (1994)
  2. P. Lecoq, I. Dafinei, E. Auffray, M. Schneegans, M.V. Korzhik, O.V. Missevitch, V.B. Pavlenko, A.A. Fedorov, A.N. Annenkov, and V.L. Kostylev, Nucl. Instrum. Methods Phys. Res. A 365, 291 (1995) https://doi.org/10.1016/0168-9002(95)00589-7
  3. P. Lecoq, Nucl. Instrum. Methods Phys. Res. A 537, 15 (2005) https://doi.org/10.1016/j.nima.2004.07.223
  4. M. Kobayashi, M. Ishii, Y. Usuki, and H. Yahagi, Nucl. Instrum. Methods Phys. Res. A 333, 429 (1993) https://doi.org/10.1016/0168-9002(93)91187-R
  5. M. Nikl, Phys. Status Solidi A 178, 595 (2000) https://doi.org/10.1002/1521-396X(200004)178:2<595::AID-PSSA595>3.0.CO;2-X
  6. A. N. Caruso, J. Phys.: Condens. Matter 22, 443201 (2010) https://doi.org/10.1088/0953-8984/22/44/443201
  7. M. Kobayashi, M. Ishii, and Y. Usuki, Nucl. Instrum. Methods Phys. Res. A 406, 442 (1998) https://doi.org/10.1016/S0168-9002(98)00015-1
  8. M. Nikl, P. Bohacek, A. Vedda, M. Martini, G.P. Pazzi, P. Fabeni, and M. Kobayashi, Phys. Status Solidi A 182, R3 (2000) https://doi.org/10.1002/1521-396X(200012)182:23.0.CO;2-8
  9. A.A. Annenkov, A.E. Borisevich, A. Hofstaetter, M.V. Korzhik, P. Lecoq, V.D. Ligun, O.V. Misevitch, R. Novotny, and J.P. Peigneux, Nucl. Instrum. Methods. Phys. Res. A 450, 71 (2000) https://doi.org/10.1016/S0168-9002(00)00156-X
  10. M. Kobayashi, Y. Usuki, M. Ishii, M. Itoh, and M. Nikl, Nucl. Instrum. Methods. Phys. Res. A 540, 381 (2005) https://doi.org/10.1016/j.nima.2004.11.046
  11. G.-H. Ren, X.-F. Chen, R.-H. Mao, and D.-Z. Shen, Acta Phys. Sin. 59, 4812 (2010)
  12. C. Ye, J. Liao, P. Shao, and J. Xie, Nucl. Instrum. Methods. Phys. Res. A 566, 757 (2006) https://doi.org/10.1016/j.nima.2006.06.065
  13. R.W. Novotny, W.M. Doring, V. Dormenev, A. Hofstaetter, M. Korzhik, T. Kuske, S. Lugert, and O. Missevitch, IEEE Nucl. Sci. Symp. Conf. Rec., Art 5402124, 2036 (2009)
  14. S. Burachas, M. Ippolitov, V. Manko, S. Nikulin, A. Vasiliev, A. Apanasenko, A. Vasiliev, A. Uzunian, and G. Tamulaitis, Radiat. Meas. 45, 83 (2010) https://doi.org/10.1016/j.radmeas.2009.11.038
  15. A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, Opt. Commun. 183, 277 (2000) https://doi.org/10.1016/S0030-4018(00)00842-7
  16. I. S. Mirov, V. V. Fedorov, I. S. Moskalev, D. V. Martyshkin, S. Y. Beloglovski, S. F. Burachas, Y. A. Saveliev, and A. M. Tseitline, Opt. Mater. 31, 94 (2008) https://doi.org/10.1016/j.optmat.2008.01.010
  17. W.B. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, Opt. Commun. 194, 401 (2001) https://doi.org/10.1016/S0030-4018(01)01148-8
  18. S. Zazubovich, and M. Nikl, Phys. State Solid (b) 247, 385 (2010) https://doi.org/10.1002/pssb.200945234
  19. R.Y. Zhu, D.A. Ma, H.B. Newman, C.L.Woody, J.A. Kierstead, S.P. Stoll, and P.W. Levy, Nucl. Instr. Meth. A 376, 319 (1996) https://doi.org/10.1016/0168-9002(96)00286-0
  20. A. Annenkov, E. Auffray, M.V. Korzhik, P. Lecoq, and J.-P. Peigneux, Phys. Status Solidi A 170, 47 (1998) https://doi.org/10.1002/(SICI)1521-396X(199811)170:1<47::AID-PSSA47>3.0.CO;2-W
  21. B. Han, X. Feng, G. Hu, Y. Zhang, and Z. Yin, J. Appl. Phys. 86, 3571 (1999) https://doi.org/10.1063/1.371260
  22. J. M. Moreau, Ph. Galez, J.P. Peigneux, and M.V. Korzhik, J. Alloys Comp. 46, 238 (1996)
  23. J. M. Moreau, R. E. Gladyshevskii, Ph. Galez, J.P. Peigneux, and M.V. Korzhik, J. Alloys Comp. 284, 104 (1999) https://doi.org/10.1016/S0925-8388(98)00750-6
  24. M. Kobayashi, Y. Usuki, M. Ishii, N. Senguttuvan, K. Tanji, M. Chiba, K. Hara, H. Takano, M. Nikl, P. Bohacek, S. Baccaro, A. Cecilia, and M. Diemoz, Nucl. Instr. Meth. A 434, 412 (1999) https://doi.org/10.1016/S0168-9002(99)00550-1
  25. Y. Huang, W. Zhu, X. Feng, Z. Liu, Z. Man, and Z. Yin, Opt. Mater. 23, 443 (2003) https://doi.org/10.1016/S0925-3467(02)00336-1
  26. M. Kobayashi, Y. Ushki, M. Ishii, N. Senguttuvan, K. Tanji, M. Chiba, K. Hara, H. Takano, M. Nikl, P. Bohacek, S. Baccaro, A. Cecilia, M. Diemoz, A. Vedda, and M. Martini, Nucl. Instrum. Methods Phys. Res. A 465, 428 (2001) https://doi.org/10.1016/S0168-9002(01)00204-2
  27. A. A. Kaminskii, C.L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, Opt. Commun. 183, 277 (2000) https://doi.org/10.1016/S0030-4018(00)00842-7
  28. L. Z. Leciejewitz, Z. Kristallogr. 121, 158 (1965) https://doi.org/10.1524/zkri.1965.121.2-4.158
  29. A. Abragam, "The Principles of Nuclear Magnetism" Chaps. VI, VI1, and IX, Oxford Univ. Press, Oxford, 1961
  30. W. W. Simmons, W. J. O'Sullivan, and W. A. Robinson, Phys. Rev. 127, 1168 (1962) https://doi.org/10.1103/PhysRev.127.1168
  31. W. E. Blumberg, Phys. Rev. 119, 79 (1960) https://doi.org/10.1103/PhysRev.119.79
  32. A. R. Lim and K. Y. Lim, Solid State Sci. 31, 70 (2014) https://doi.org/10.1016/j.solidstatesciences.2014.03.004
  33. R. L. Mieher, Phys. Rev. 125, 1537 (1962) https://doi.org/10.1103/PhysRev.125.1537
  34. J. Van Kranendonk, Physica 20, 781 (1954) https://doi.org/10.1016/S0031-8914(54)80191-1
  35. A. R. Lim, AIP Adv. 6, 35307 (2016) https://doi.org/10.1063/1.4943978