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Abstract We study optical quantum transition line 

widths in relation to magnetic field dependence 

properties of the electrons confined in an infinite 

square well potential system between 0z =  and 

zz L=  in the z− direction. We consider two 

systems-one is subject to right circularly oscillating 

external fields and the other is subject to left 

circularly oscillatory external fields. Our results 

indicate that the line widths of right circularly 

oscillating external fields is larger than the line 

widths of left, while the opposite result is obtained 

for the line widths. 

 

Keywords Cyclotron resonance, line widths, 

absorption power, scattering factor function, wurtzite 

structure 

 

 

Introduction 

 

There has been a great deal of interest in zinc oxide 

(ZnO ) semiconductor materials lately, as seen from a 

surge of a relevant number of publications. The 

interest in ZnO  is fueled and fanned by its prospects 

in optoelectronics applications owing to its direct 

wide band gap (Eg ~ 3.3 eV at 300 K ).
1 2−

 Most of 

the group Ⅱ-Ⅵ binary compound semiconductors 

crystallize in either hexagonal wurtzite or cubic 

zinc-blende structure where each anion is surrounded 

by four cations at the corners of a tetrahedron, and 

vice versa. This tetrahedral coordination is typical of 

3sp  covalent bonding, but these materials also have 

a substantial ionic character. ZnO  is a Ⅱ-Ⅵ 

compound semiconductor whose iconicity resides at 

the borderline between covalent and ionic 

semiconductor. We have considered two systems-one 

is under a right circularly oscillating external fields 

(RCF) and the other is under a left circularly 

oscillating fields (LCF). The main purpose of this 

work is to compare cyclotron transition line widths 

(CTLWs) under both directions right and left of 

circularly polarized oscillating external fields. There 

are several methods to obtain CTLWs in response 

function. Among them the theoretical and 

experimental investigations in the presence of very 

high electric and/or magnetic fields have received 

special attention. The theoretical studies performed 

so far on high electric field transport are usually 

based on the following methods: the Green’s function 

approach, Feynman’s path integral approach, the 

Wigner representation approach, and the equilibrium 

average projection scheme (EAPS). Despite the fact 

that all these methodologies are quite reasonable, the 

nonlinear behavior has been investigated in limited 

schemes. Actually, for a more acceptable 

interpretation of the transport behavior of electrons 

which are subject to strong electric fields.
3 9−

 In this 

study, through a numerical calculation of the 

theoretical result, we investigated the 

magneto-optical cyclotron resonance in wurtzite 

structure (in Fig. 1). We first modify the EAPS 

formula into one that is easy to deal with. Next, we 

calculate the magnetic field dependence of the 

CTLWs and the absorption power of ZnO  for 
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 =220, 394,  513,  550 , 720 m  at T =50 K . 

 

 

Theory 

 

When a static magnetic field ˆB Bz=  is applied to 

an electron system, the single electron energy state is 

quantized to the Landau levels. We select a system of 

electrons confined in an infinite square well potential 

between 0z =  and 
zz L=  in the z− direction. 

Using the Landau gauge (0, ,0)xA B= ,
10 17−

 we 

define a single electron Hamiltonian 
eh  as 

22
2 22 (z),

2
e

eB eB
h i x x U

m y

    
= −  + − +    

     

   (1)                              

and we obtain the eigenstate in the system as 
( ) ( )

, , ( , , ) ( ) ( ),
y z

plw cfn

N k k G kr N l nx y z C x z
  

    =   (2)                               

where the plane wave is ( ) exp( )plw

kr yik y   and the 

explicit function is 
2
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         (3)                                       

Here, ( )NH x


 is the Hermite polynomials function, 

0 /l eB=  is the radius of cyclotron motion, 

*/c eeB m =  is the cyclotron frequency, *

em  is the 

effective mass of the electron, 
*

0/ /z z ex k eB k m   = − = −  is the center of 

cyclotron motion, and 
lx x x − . The confined 

wave function is 

( ) ( )
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(4) 

where n
  and nk


(the quantization condition for 

the z -direction components of the electron wave 

vector of   and k , respectively) are obtained by 

solving the simultaneous equations 
0cotk kz = −  

and *

02 /ek m U + = , with the conditions 0   

and 0 k . Here, the square-well confinement 

potential 
0( )U z U  is a constant potential in the 

region 00 z z  , and ( )U z    is a constant 

potential in the region 0z  , 
0z z . The values 

of normalization factors are 1/ ,G yC L  

( )01/ 2 ! .N

rN N l  The values of normalization 

factors change in other systems. We obtain the 

corresponding eigenvalue as follows: 
2 2

2

, , , * 2

( )

1

2 2y zN n k k c

e z sys

N n
m L     


 

 
= + + 
 

        (5)                                  

( )0,1,2,3,...... 0,1,2,3,... .N n = =  

Here, 2

( )z sysL z  is the size of materials in the 

z -direction. If we consider a system of many bodies 

that are subject to circularly polarized oscillatory 

external fields 
0( ) exp( )E t E i t+ = , where   is the 

angular frequency, then, using the Coulomb gauge 

( ) /E t A t= −  , the total Hamiltonian of the system 

is ( )( ) '( ) / ( ).s sH t H H t H i J E t +

+= + = + −  The 

many-electron current operator J 
 are defined as 

†

1J j a a  


+ +

+=                           (6)                                                        

and  
*

1( ) ,J j a a  


− +

+=                         (7)                             

where 
x yJ J iJ =   are the two components of the 

single electron current operator j , the matrix 

elements are 

( )( )1 1 ,sysj j g N  
 

 + + + = +           (8)                                 

and 

( )1 ,sysj j g N 
 

 − + + =              (9)                                  

where ( )* 2

( ) 0/ 1/ .sys eg ie m l −  
( )sysg  can be 

changed for other systems and external fields. Here, 
†

1 2( )a a  is the annihilation operator (creation 

operator) of a fermion and ( )   is the eigenstate 

of a single electron. We define the Hamiltonian of the 

electron-phonon interacting system as 

s e pH H H V= + +  

† † † †

,

,

( ) ( ),e q q q k k q q

q q k

h a a b b C q a a b b   
 

   −= + + +   
                 

(10) 

where, eH  is the electron Hamiltonian, pH  is the 

phonon Hamiltonian and V  is the 
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electron-piezoelectric phonon interaction 

Hamiltonian. The †

1 2(b )b  is the annihilation 

operator (creation operator) of boson particles, and 

q  is the phonon wave vector. The interaction 

Hamiltonian of the electron-piezoelectric phonon 

scattering system is V , where the coupling matrix 

element of the electron-phonon interaction 
, ( )kC q

 

is 
2

, ( ) exp( )k qC q V k iq r   , and r  is the 

position vector of electrons. Following Meijer and 

Polder, we adopted the isotropic interaction 

formalism to choose the interaction factor qV  is 

given by 
2 2

2

0

1
.

2

s
q

v e
V

q


=


                         (11)                                    

Here the   is the electrochemical constant, the sv  

is the sound velocity in solid, the   is the volume 

of the system, the 0  is the permittivity of free 

space and the   is the dielectric constant. The 

Fermi-Dirac distribution functions are 

/
1/ [ 1]Bk T

f e 

 = +  and 
/

1/ [ 1],Bk T
f e 




 = +  in 

which the eigenvalues are 

( )
2 2

*
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N

m
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    
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= + + + −  

  
 (12)                                   
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1
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c c F k k q
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 (13)                           
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22
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,

2 2

z z

c c F

k q
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   
  

= + + + −  
   

 (14)                              

where zk   is the z  component of the electron 

wave vector and the chemical potential energy: 

*

3
( ) 0.5 ( ) ln ,

4
c F g B

kT m
T T k T

T m
  



  
− = − −   

−   

 (15)                           

where c  is the conduction band minimum energy, 

( )F T  is the Fermi energy, ( )g T  is the band gap 

energy at T , k and   are the characteristic 

constant of the materials, and m  is the density of 

states effective mass of hole. The phonon distribution 

parts are †

q q q qN b b n− = =  and † 1q q q qN b b n+ = = + , 

where the Bose-Einstein distribution function is 
( , ) 1[e 1]q T

qn  −= − . Here the phonon energy is 

( )
2

2( , ) .
q ks

n z

B B

v
q T q q

k T k T




 ⊥= = +          (16)                                      

This result can be applied directly to the numerical 

analysis through wave vector integration. 

 

 

 
Figure 1. Schematic representation of a wurtzitic ZnO  

structure having lattice constants a  in the basal plane and 

c  in the basal direction. 

 

 

Absorption Power Formula and Line Widths 

 

We suppose that an oscillatory electric field 

0( ) exp( )E t E i t=  is applied along the z− axis, 

which gives the absorption power delivered to the 

system as 2

0( ) ( / 2) Re{ ( )}.absP E  =  In this 

equation, “Re” is the real component and ( )   is 

the magneto-optical conductivity tensor, which is the 

coefficient of the current formula. In order to apply 

the linear response formula to optical quantum 

transition system, in a RCF system, we replace kr  

with 
kJ J − , 'XlL  with ( )'X / ,lL i J X +  −  

, 

and 
lJ J +  for current system under an oscillating 

external field of the frequency .  We obtain the 

right circular current from the response formula, 

( ) ( )

(R) ( )

/
J ( ) E( ),

( )

R

klR

R

kl kl

i

A
 

 

 − 
=  

− + 

         (17)                                       

where 

( )( )

1, , 1 1 ,R

kl

i
j j f f     



+ +

+ + +

  
 = − −  

  
       (18)                                   
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( ) .R

kl ci =                               (19)                                      

We can easily obtain the LFC from the response 

formula with the EAPS, while recent research on the 

response formula was restricted to the right circular 

current under a right circular polarized external field. 

For the left circular polarized external system, we 

replace 
kr  to 

kJ J + , 'XlL  with 

( )'X / ,lL i J X −  −  
, and .lJ J −  We obtain the 

left circular current from the response formula as 

( ) (L)

(L) (L)

/
J ( ) E( ),

( )

klL

kl kl

i

A
 

 

 − 
=  

− + 

          (20)                                     

where 

( )(L)

1, , 1 1 ,kl

i
j j f f     



+ +

+ + +

  
 = − −  

  
       (21)                                  

and 
(L) .kl ci = −                             (22)                                    

 

 

 
 
Figure 2. Ring contribution to the scattering factor 

function. 

 

 

The scattering factor function, ( ) ( )R

kl  (L) ( )kl   
, is 

expressed in the complex form 

as ( ) ( ) ( )( ) ( )R R R

kl total totali    + , where 

( ) ( )Im ( )R R

total total  =  , giving the line shift of a 

response formula, and ( ) ( )( ) Re ( )R R

total total  =   

giving the line width of the response formula. The 

scattering factor function is schematically 

represented in Fig. 2. In most cases, the imaginary 

part of the scattering factor, ( ) ,R

total  is negligible in a 

real system because of its small value. We obtain 

final result of the absorption power formula, in right 

circularly oscillating external fields, 
18 19−

 

( )

12 2
( )

22 2 ( )

( ) ( 1)( )

( ) .
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(23) 

Here, the scattering factor function is given by 
( ) ( ) ( )

,

0 0
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(24) 

Because the integrand factors ( )

,

RY 
 are in a 

complex form, we arrange them in the appendix. For 

the left circularly oscillating external fields, we 

obtain final result of the absorption power formula, 

(L)
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(26) 

We also arrange 
(L)

,Y   in the appendix. 

 

 

Results 

 

For that purpose we calculated the LWs for ZnO  

which is a typical wurtzite material. Note that, since 

the theory was proved to be valid for an infinite 

square well potential, if it gives good interpretation 

for wurtzite materials. Through the numerical 

calculation of Eq. (23) and Eq. (24), we analyzed 

LWs in ZnO . We use *

00.27m m=  and 

01.8m m= , which are the effective masses of 

constants of ZnO  are 3 34.09 10 =  kg / m , 



Jung-Il Park / J. Kor. Magn. Reson. Soc., Vol. 25, No. 4, 2021 55 

 

 

 

35.61 10slv =  m /s  is the longitudinal sound 

velocity, 32.99 10stv =  m /s  is the transverse 

sound velocity, 31.78 10k −=  eV / K , 204 = K  

and 2 26.27 10K −=  . The speed of sound sv  in Eq. 

(16) is replaced by the average value sv  of slv  

and stv , as ( ) / 2s sl stv v v= +  and the energy gap 

( )g T  is replaced by 3.42g = eV  as an 

approximation, noting that the variation with the 

temperature is very small. A more accurate value of 

( )g T  can be obtained by Eq. (15) if the 

characteristic constants k  and   are available.  

 

 

 
Figure 3. The magnetic field dependence of line widths, 

(R) ( )B  and ( ) ( )L B  of ZnO  for  =220,  394,  

513,  550 , 720 m  at T =50 K . 

 

 

In Fig. 3, we show the obtained magnetic field 

dependence of the LWs, ( )B  of ZnO , at 

T =55,  60,  65,  70,  and 80 K.  The results 

indicate that ( ) ( )L B  is larger than (R) ( )B  at all 

temperatures. The result is also able to reasonable 

explain the directional characteristic of electron 

motion, which is given by the magnetic field 

direction and the condition of the system. The 

analysis of the magnetic fields dependence of LWs in 

various magnetic fields is very important for 

understanding the magnetic properties of materials. 

The analysis of the magnetic field dependence of 

LWs is very difficult using other theories or in 

experiments, because it is necessary to calculate or 

observe absorption power at various external field 

wavelengths. The EAPS theory has an advantage 

because we can directly obtain LWs, through EAPS, 

at various external field wavelengths. We do not need 

to calculate absorption power to obtain LWs. In order 

to analyze the quantum transition process in the case 

of the RCF, we denote the total LWs as 
( ) ( ) ( )

int int( ) ( ) ,R R R

total raL erLT T   +  

where 
( ) ( )em ( )ab

int int intra( ) ( ) ,R R R

raL raL LT T   +  

and 
( ) ( )em ( )ab

inter inter inter( ) ( ) ,R R R

L L LT T   +  

are the LWs of the total intra-level and total 

inter-level transition process, respectively. Here, 
( )em ( )

int 0,0( ) ,R R

raLT +    

( )em ( )

inter 0,1( ) ,R R

LT +    

( )ab ( )

int 0,0( ) ,R R

raLT −    

and 
( )ab ( )

inter 0,1( ) R R

LT −    

are the LWs of the intra-level emission transition, the 

inter-level emission transition process, the intra-level 

absorption transition and the inter-level absorption 

process, respectively.  

 

 

 
 

Figure 4. The relatively frequency ( )  dependence of 

the absorption power, ( )P ( )R   and (L)P ( )  of ZnO  

for  =220,  394,  513,  550 , 720 m  at 

T =50 K . 

 

 

In Fig. 4, the relatively frequency ( )  

dependence of the absorption power, ( )P ( )R   and 
(L)P ( )  of ZnO , with  =220,  394,  513,  

550 , 720 m  at T =50 K  are shown. From the 

graph of ( )P ( )R   and (L)P ( ) , we can see the 

broadening effects near the resonance peak for 
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various external fields. The relativity frequency 

( )  dependence of absorption power represents the 

magnetic field dependence property of absorption 

power, which is given by external field wavelength 

and the condition of the system. In addition, the 

advantages of the EAPS theory are evident in the 

calculation of LWs for various cases. The results 

indicate that the EAPS is useful to explain the 

resonant phenomena based on the quantum transition 

and the scattering effects in a microscopic view. 

 

 

Summary 

 

As a summary, the EAPS theory provides a relatively 

easy approach to the analysis of the magnetic field 

dependence of the LWs. Furthermore, we found that 

LWs of ZnO  increased with the temperature. We 

also found that ( ) ( )L B  is larger than (R) ( )B  at all 

temperatures. The result is able to reasonable explain 

the directional characteristic of electron motion, 

which is given by the magnetic field direction and the 

condition of the system. Therefore, we predict that 

this result was because of the geometrical structure of 

wurtzite type semiconductors. 

 

 

Appendix: Integrand of the scattering factor 

function 

 

In continuous approximation, the interaction matrix 

part in an infinite square well potential system is 

given as 
2 2

,

N ,N N ,N , , ,( ) ( ) ( ) ( ) ,
z z zq k k qC q C q V K t F q

     

 

     
  
 

 

2 2
,

N ,N N ,N , , ,( ) ( ) ( ) ( ) ,
z z zq k k qC q C q V K t F q

     

 

      
 

 

if N N   and 
kN N , the K-matrix is 

( ) ( ),

,

! !
exp( ) ( ) ( ),

! !

k
k

k

N N N N
N N N Nk

k N N

N N
K t t t L t L t

N N

  
  



  


 

− −
− −

 −
 

where the Legendre function is 

( )
1 1

( ) exp( ) exp( )
!

n
m n m

n m n

d
L t t t t

n t dt

+ 
 = −   

 

   

( )2 2 2

0
.

2

x yr q q
t

+
  

The matrix element of the confinement potential is 
2

2

, ( ) ( ) exp(iq ) ( )dqcfn cfn

z zF q z z z    
+

−

=   

Then, through continuous approximation, we derived 

the integrand of the scattering factor 
( )

, , , , , ,R A B C DY Y Y Y Y          + + +  

and 

( )( )( ) ( ),

, , 1 , 11 1 ,A

qY S N f f N F 

         

 

+ +
  + − + −
 

 

( ) ( )( ) ( ),

, , 1 1, 1 1 11 1 ,B

qY S N N f f N f 

          

  

+ + + + +
  − + + −  

 

( ) ( )( ) ( ) ( ),

, , 1 1, 1 1 11 1 1 ,C

qY U N N f f N f 

          

  

+ + + + +
  − + + −  −
 

( )( )( ), 1

, , 1, 11 .D

qY U N f f N f 

         

+ 

+ +
  + −  

 

With the interacting matrix 

( ) ( ) ( ) ( )
2

2 2 2
, 2 ,

, , 1 1 , 1,
2

k k

z z

r
S V q q q q K q    

     ⊥ ⊥ ⊥

  
 +  

  

 

( ) ( ) ( )
2

2 2 2
2 ,

2 2 , 2, ,
2

k

z z

r
V q q q q K q   

 ⊥ ⊥ ⊥

  
+ +  

  

 

( ) ( ) ( ) ( )
2

2 2 2
, 2 ,

, , 3 3 , 3,
2

k k

z z

r
U V q q q q K q    

     ⊥ ⊥ ⊥

  
 +  

  

( ) ( ) ( )
2

2 2 2
2 ,

4 4 , 4, .
2

k

z z

r
V q q q q K q   

 ⊥ ⊥ ⊥

  
+ +  

  
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