DOI QR코드

DOI QR Code

Characterization of Ag/TiO2 Nanoparticles Synthesis

Ag/TiO2미세입자 합성물의 특성 분석

  • Kyungho Kang (Research and Development Center, CS Energy) ;
  • Yonggi Jo (Research and Development Center, CS Energy) ;
  • Sun-Geum Kim (Research and Development Center, CS Energy)
  • 강경호 (씨에스에너지(주) 기업부설연구소) ;
  • 조용기 (씨에스에너지(주) 기업부설연구소) ;
  • 김순금 (씨에스에너지(주) 기업부설연구소)
  • Received : 2023.12.14
  • Accepted : 2023.12.28
  • Published : 2024.03.01

Abstract

This study examines a manufacturing process for the photoelectrode material of dye-sensitized solar cell (DSSC) intending to increase efficiency through the surface plasmon resonance phenomenon of nanoparticles with a composite structure made of Ag and TiO2. This invention involves the use of Ag and TiO2 nanoparticles in the solar cell. These nanoparticles cause surface plasmon resonance, which amplifies and scatters incident solar energy, enhancing the dye's rate of light absorption. It also makes it possible to absorb energy in wavelength ranges that were previously difficult to do, which increases efficiency. Centrifugal separation and heat synthesis are used to create the composite metal structures, and certain combinations are used to decide the particle morphologies. To increase the efficiency of organic solar cells and DSSC, the Ag/TiO2 composite structure is therefore quite likely to be used.

Keywords

Acknowledgement

본 연구는 중소벤처기업부와 중소기업기술정보진흥원의 '지역특화산업육성+(R&D, S3257339)' 사업의 지원을 받아 수행된 연구 결과임.

References

  1. X. G. Zhao, E. M. Jin, and H. B. Gu, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 427 (2011). doi: https://doi.org/10.4313/JKEM.2011.24.5.427
  2. M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles, Nat. Mater., 4, 607 (2005). doi: https://doi.org/10.1038/nmat1433
  3. J. Xia, N. Masaki, K. Jiang, Y. Wada, and S. Yanagida, Chem. Lett., 35, 252 (2006). doi: https://doi.org/10.1246/cl.2006.252
  4. S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel, and A. J. Frank, J. Phys. Chem. B, 101, 2576 (1997). doi: https://doi.org/10.1021/jp962377q
  5. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Gratzel, J. Am. Chem. Soc., 123, 1613 (2001). doi: https://doi.org/10.1021/ja003299u
  6. K. Okada, H. Matsui, T. Kawashima, T. Ezure, and N. Tanabe, J. Photochem. Photobiol., A, 164, 193 (2004). doi: https://doi.org/10.1016/j.jphotochem.2004.01.028
  7. M. Gratzel, J. Photochem. Photobiol., C, 4, 145 (2003). doi: https://doi.org/10.1016/S1389-5567(03)00026-1
  8. Z. Lin, X. Wang, J. Liu, Z. Tian, L. Dai, B. He, C. Han, Y. Wu, Z. Zeng, and Z. Hu, Nanoscale, 7, 4114 (2015). doi: https://doi.org/10.1039/C4NR06929C
  9. Y. Yoo and P. Mulvaney, J. Korean Ceram. Soc., 40, 902 (2003). doi: https://doi.org/10.4191/kcers.2003.40.9.902
  10. H. Y. Yang, S. H. Lee, H. M. Kim, X. H. Pham, E. Hahm, E. J. Kang, T. H. Kim, Y. Ha, B. H. Jun, and W. Y. Rho, J. Ind. Eng. Chem., 80, 311 (2019). doi: https://doi.org/10.1016/j.jiec.2019.08.009
  11. J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, ACS Nano, 5, 7108 (2011). doi: https://doi.org/10.1021/nn201808g
  12. T. Kiba, K. Masui, Y. Inomata, A. Furumoto, M. Kawamura, Y. Abe, and K. H. Kim, Vacuum, 19, 110432 (2021). doi: https://doi.org/10.1016/j.vacuum.2021.110432
  13. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, S. Agilan, and R. Balasundaraprabhu, J. Mater. Sci.: Mater. Electron., 24, 553 (2013). doi: https://doi.org/10.1007/s10854-012-0831-5
  14. S. Dey and S. C. Roy, Ceram. Int., 47, 14603 (2021). doi: https://doi.org/10.1016/j.ceramint.2021.02.043
  15. H. Zhang, C. Liang, J. Liu, Z. Tian, G. Wang, and W. Cai, Langmuir, 28, 3938 (2012). doi: https://doi.org/10.1021/la2043526
  16. F. C. Gennari and D. M. Pasquevich, J. Am. Ceram. Soc., 82, 1915 (1999). doi: https://doi.org/10.1111/j.1151-2916.1999.tb02016.x
  17. H. Yin, K. Yu, C. Song, R. Huang, and Z. Zhu, ACS Appl. Mater. Interfaces, 6, 14851 (2014). doi: https://doi.org/10.1021/am501549n
  18. R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Levy, J. Appl. Phys., 75, 2945 (1994). doi: https://doi.org/10.1063/1.356190
  19. M. Taheri, F. Hajiesmaeilbaigi, A. Motamedi, and Y. Golian, Laser Phys., 25, 065901 (2015). doi: https://doi.org/10.1088/1054-660X/25/6/065901