• Title/Summary/Keyword: Suanxue Qimeng

Search Result 4, Processing Time 0.013 seconds

A Comparison between Suanxue qimeng(Introduction to Mathematical Studies} and Muksa-jipsanbup (산학계몽과 묵사집산법의 비교)

  • Her, Min
    • Journal for History of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Suanxue qimeng(算學啓蒙) is the introduction to mathematics which greatly influenced Chosun mathematics, Muksa-jipsanbup(默思集算法) imitated the style and the contents of Suanxue qimeng, but contains a lot of problems, secondary solutions and topics which is not in Suanxue qimeng and tried to achieve educational improvement. However Muksa-jipsanbup could not use the method of rectangular arrays(方程術) because it excluded the method of positive and negative(正負術), and has a serious limitation in applying the method of extracting roots by iterated multiplication(增乘開方法) because it avoided the technique of the celestial element(天元術).

  • PDF

Zeros of Polynomials in East Asian Mathematics (동양(東洋) 수학(數學)에서 다항방정식(多項方程式)의 해(解))

  • Hong, Sung Sa;Hong, Young Hee;Kim, Chang Il
    • Journal for History of Mathematics
    • /
    • v.29 no.6
    • /
    • pp.317-324
    • /
    • 2016
  • Since Jiuzhang Suanshu, mathematical structures in the traditional East Asian mathematics have been revealed by practical problems. Since then, polynomial equations are mostly the type of $p(x)=a_0$ where p(x) has no constant term and $a_0$ is a positive number. This restriction for the polynomial equations hinders the systematic development of theory of equations. Since tianyuanshu (天元術) was introduced in the 11th century, the polynomial equations took the form of p(x) = 0, but it was not universally adopted. In the mean time, East Asian mathematicians were occupied by kaifangfa so that the concept of zeros of polynomials was not materialized. We also show that Suanxue Qimeng inflicted distinct developments of the theory of equations in three countries of East Asia.

Mathematical Structures of Joseon mathematician Hong JeongHa (조선(朝鮮) 산학자(算學者) 홍정하(洪正夏)의 수학적(數學的) 구조(構造))

  • Hong, Sung Sa;Hong, Young Hee;Lee, Seung On
    • Journal for History of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • From the mid 17th century, Joseon mathematics had a new beginning and developed along two directions, namely the traditional mathematics and one influenced by western mathematics. A great Joseon mathematician if not the greatest, Hong JeongHa was able to complete the Song-Yuan mathematics in his book GuIlJib based on his studies of merely Suanxue Qimeng, YangHui Suanfa and Suanfa Tongzong. Although Hong JeongHa did not deal with the systems of equations of higher degrees and general systems of linear congruences, he had the more advanced theories of right triangles and equations together with the number theory. The purpose of this paper is to show that Hong was able to realize the completion through his perfect understanding of mathematical structures.

Siyuan Yujian in the Joseon Mathematics (조선(朝鮮) 산학(算學)의 사원옥감(四元玉鑑))

  • Hong, Sung Sa;Hong, Young Hee;Lee, Seung On
    • Journal for History of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.203-219
    • /
    • 2017
  • As is well known, the most important development in the history of Chinese mathematics is materialized in Song-Yuan era through tianyuanshu up to siyuanshu for constructing equations and zengcheng kaifangfa for solving them. There are only two authors in the period, Li Ye and Zhu Shijie who left works dealing with them. They were almost forgotten until the late 18th century in China but Zhu's Suanxue Qimeng(1299) had been a main reference for the Joseon mathematics. Commentary by Luo Shilin on Zhu's Siyuan Yujian(1303) was brought into Joseon in the mid-19th century which induced a great attention to Joseon mathematicians with a thorough understanding of Zhu's tianyuanshu. We discuss the history that Joseon mathematicians succeeded to obtain the mathematical structures of Siyuan Yujian based on the Zhu's tianyuanshu.