• Title/Summary/Keyword: Structure vibration analysis

Search Result 2,112, Processing Time 0.045 seconds

Radiation characteristics on a stiffened plate structure (보강된 평판구조물의 음향방사특성에 관한 실험적 고찰)

  • Kang, Jun-soo;Kim, Jeung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.879-886
    • /
    • 1998
  • It is very important to understand the vibration and noise characteristics of a structure to developed quiet machines and lessen their noise. In this paper, the vibration and sound radiation characteristics of a simple and a bar-stiffened plate have been investigated using numerical and experimental techniques. In numerical process, FEM analysis has been performed for the vibration level ; the time-space squared and averaged velocity and BEM analysis for sound radiation parameters ; sound power and radiation efficiency. In experimental process, FFT signal processing method has been used. While a power from an exiciter is applied to the structure by using a point contact, sound intensity and vibration level has been measured. Based on these two data, the radiation efficiency has been calculated. Results show that the radiation efficiency for the stiffened structure increases compared to the simple plate, due to the extra edges provided by the stiffener.

The Sensitivity Analysis for Structure Modification using Partial Differentiation (구조물의 동특성 개선을 위한 모드 매개변수의 민감도 해석)

  • Lee, Hae-Jin;Abu, Aminudin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.453-457
    • /
    • 2006
  • This study predicts the modified structure of eigenvectors and eigenvalues due to the changes in the mass and the stiffness of the structure. The sensitivity method of natural frequency using partial differential are derived with respect to the physical parameter to calculate the structure modification. The method are applied to the 3 degree of freedom???slumped mass model by modeling the mass and stiffness, and then applies the method to a real crankshaft system. The position, direction of parameter change and modified value were predicted for modification. Finally the predicted value is used to investigate the magnitude of vibration and we found that the effect of modification results to reduce the level of magnitude vibration is satisfactory.

  • PDF

Numerical Analysis of the Mechanical Impedance and Transmitted Vibration of the Foundation for the Equipment in a Naval Vessel (수치해석을 이용한 함정용 장비 받침대의 기계적 임피던스 및 전달 진동 분석)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.462-467
    • /
    • 2009
  • Reduction of the structure-borne noise of the naval vessel is very important in order to reduce the underwater radiated noise of it. One of the important factors to reduce the structure-borne noise of the installed machine in a ship is the design of the foundation having sufficiently high mechanical impedance. In this paper, the mechanical impedance of the foundation for the fan-coil unit in a naval vessel is evaluated numerically according to variation of the thickness of the foundation. And also, the forced vibration analysis is conducted considering the dynamic property of the anti-vibration mount. Through the analysis results, it can be known that the dynamic property of the anti-vibration mount should be considered when the minimum level of the mechanical impedance of the foundation is set.

Numerical Analysis of Vibration Characteristics in Deep Water Tank (수치해석에 의한 심수 탱크구조물의 진동에 관한 연구)

  • 배성용
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.791-797
    • /
    • 2003
  • A liquid storage rectangular tank structures are used In many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks In contact with Inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine or propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. In the previous report, we have developed numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present report, using the numerical analysis, vibrations characteristics In deep water tank are investigated and discussed.

Numerical Analysis of Vibration Characteristics in Deep Water Tank (수치해석에 의한 심수 탱크구조물의 진동에 관한 연구)

  • 배성용;홍봉기;배동명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1079-1084
    • /
    • 2003
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks ill contact with fluid near engine or propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. In the previous report, we have developed numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present report, using the numerical analysis, vibrations characteristics in deep water tank are investigated and discussed.

  • PDF

A Method for Finite Element Vibration Analysis of Rotating Structures with Cyclic Symmetry (회전하는 순환대칭 구조물의 유한요소 진동해석 기법)

  • 김창부;심수섭
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1150-1157
    • /
    • 1998
  • In this Paper, we present an efficient method for finite element vibration analysis of constantly rotating structures with cyclic symmetry, which are deformed to some considerable extent by centrifugal force, Coriolis force and operating load, and vibrate due to several types of exciting forces. A structure with cyclic symmetry is composed of circumferentially repeated substructures with the same geometry. Being only one substructure modeled. the dynamic characteristics of the structure can be analyzed systematically. rapidly and exactly using discrete Fourier transform by means of a computer with small memory.

  • PDF

A Study on the Vibration Characteristics of Weaving Machine Structure using Component Mode Synthesis (부분구조합성법을 이용한 제직기 구조물의 진도특성에 관한 연구)

  • 권상석;김병옥;전두환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.535-539
    • /
    • 2001
  • In these days. the finite element method(FEM) is a very common method for not only a simple vibration analysis but also the optimization of structures. Since the finite element model may contain thousands of degree of freedom, the eigensolutions require extreme computing power, which will result in a serious time-consuming problem. Thus, many researchers have challenged to find more improved modeling techniques and calculating methods to overcome such problems. The Guyan reduction method and the substructure synthesis method are typical examples of such methods. Of the substructure synthesis method, the component mode synthesis method (CMS) is widely used for dynamic analysis of structure. In this study. for the efficient analysis of jet loom structure. Component Mode Synthesis was carried out. The results of the finite element program developed are compared with those of the commercial package program ANSYS for the validation of the program. The results obtained by the program showed a good agreement with those of ANSYS. The program will be further refined and verified by test to yield more accurate results.

  • PDF

Study on Vibration Characteristics of Fluid Tank Structure for Ship (유체 탱크 구조물의 접수 진동 특성에 관한 연구)

  • Seo, Myeng-Kab;Seok, Ho-Il;Lee, Chul-Won
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.85-89
    • /
    • 2013
  • In the engine room and the aft body, there are so many fluid tanks such as fresh water tank and oil tank. The vibration analysis for the fluid tank structures has to consider the added mass effect due to the fluid. However, it is known that the result of the fluid tank has the difference according to the boundary condition of the fluid field such as infinite fluid and finite fluid. In this paper, a numerical case study is carried out for the research about the vibration characteristics of the fluid tank with various fluid field. In addition, an experimental study is carried out to verify the validity of the vibration analysis for the fluid tank structure.

  • PDF

Vibration Reduction of Electric-powered Hand Grinder (전동 핸드그라인더의 진동 저감)

  • 조성진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.831-836
    • /
    • 2004
  • Vibration of electric-powered hand grinder comes from the parts of motor, gear, bearing, and fan. Excessive vibration can be harmful to workers. To reduce vibration of a hand grinder we analyzed the frequency components from the routing electric-powered grinder and did modal test to find the natural frequencies of the each part. It shows that the vibration is due to the resonance of the case. To remove the resonance, the case structure is modified and the bearing cap is replaced on a basis of the results from the rotor dynamic analysis using SAMCEF. As a result the vibration of the hand grinder is reduced greatly.

  • PDF

Vibration Response Analysis of Gravity-type Caisson Breakwater (중력식 케이슨 방파제의 진동응답 분석)

  • Lee, So-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae;Han, Sang-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.91-96
    • /
    • 2013
  • In this paper, vibration response of gravity-type caisson breakwater is analyzed to suggest the direction for structural health monitoring (SHM) on harbor caisson structure. To achieve the objective, the following approaches are implemented. Firstly, vibration analysis methods are selected to examine the dynamic characteristics of the lab-scale caisson in the frequency and the modal domain. Secondly, vibration tests on the lab-scale caisson breakwater which is installed in 2-D wave tank were performed under several water level conditions. Thirdly, vibration response of the lab-scale caisson were analyzed in the frequency and modal domain. Finally, the direction of SHM for gravity-type caisson breakwater was suggested.

  • PDF