• 제목/요약/키워드: Structural damping

검색결과 1,214건 처리시간 0.028초

비보존력을 받는 Beck 기둥의 전단변형효과에 관한 매개변수적 고찰 (A Parametric Study on the Shear-deformation Effect for Beck's Column under Follower Force)

  • 이준석;김남일;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.985-991
    • /
    • 2006
  • For a shear-deformable beam-column element subjected to non-conservative forces. equations of motion and a finite element formulation are presented applying extended Hamilton's principle. The influence of non-conservative force's direction parameter. internal and external damping forces, and shear deformation and rotary inertia effects on divergence and flutter loads of Beck's columns are intensively investigated based on element stiffness. damping and mass matrixes derived for the non-conservative system.

  • PDF

사장 케이블 제진을 위한 스마트 제진 기법 (Smart Control Techniques for Vibration Suppression of Stay Cable)

  • 정형조;박철민;조상원;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.264-271
    • /
    • 2006
  • Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. It has been reported that a semiactive control system using MR dampers could potentially achieve both the better performance compared to a passive control system and the adaptability with few of the detractions. However, a control system including a power supply, a controller and sensors is required to improve the control performance of MR dampers. This complicated control system is not effective to most of large civil structures such as long-span bridges and high-rise buildings. This paper proposes a smart damping system which consists of an MR damper and the electromagnetic induction (EMI) part that is considered as an external power source to the MR damper. The control performance of the proposed damping system has been compared with that of the passive-type control systems employing an MR damper and a linear viscous damper.

  • PDF

지진하중에 의해 발생된 가속도를 이용한 시간창 기법에 의한 구조물의 손상탐지 (Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake)

  • 박승근;이해성
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.529-535
    • /
    • 2005
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least squared errors between the measured acceleration and the calculated acceleration by a mathematical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping. A new regularization function defined by the L1-norm of the first derivative of system parameters with respect to time is proposed to alleviate the ill-posed characteristics of inverse problems and to accommodate discontinuities of system parameters in time. The time window concept is proposed to trace variation of system parameters in time. Numerical simulation study is performed through a two-span continuous truss subject to ground motion.

  • PDF

구조물 손상 탐지를 위한 시간 영역에서의 SI기법 (System Identification in Time Domain for Structural Damage Assessment)

  • 이해성;박승근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.614-618
    • /
    • 2003
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least square errors between the measured acceleration and the calculated acceleration by a mathmatical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping. A new regularization function defined by the L$_1$-norm of the first derivative of system parameters with respect to time is proposed to alleviate the ill-posed characteristics of inverse problems and to accommodate discontinuities of system parameters in time. The time window concept is proposed to trace variation of system parameters in time.

  • PDF

위상신호를 이용한 단순평판의 진동계측 (Measurement of Plate Vibration by Using Phase Signals)

  • 함연수;김정수;김관주
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.949-954
    • /
    • 2000
  • Applicability of the vibration signal phase for predicting the modal damping properties of structures is investigated. For uniform plates with different internal damping levels, the phase delay as a function of the frequency span as well as a function of the distance between the excitation and response measurement points are experimentally obtained. Dependence of the phase characteristics on the amount of structural damping is elucidated -more heavily damped plate shows notably reduced phase delay at intermediate distances. The experimental results compare favorably with analytical predictions, and show much promise for further refinement as a tool for estimating structural properties.

  • PDF

철도교량 동특성 분석을 위한 궤도형식별 모달 테스트 (Modal Tests of Railway Bridges considering the Type of Track Structures)

  • 김성일;유진영;문제우;홍성모;김종태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.101-108
    • /
    • 2008
  • The dynamic behavior of railway bridges originates from dynamic properties of various spans and structural types. As a result, the exact estimation of dynamic properties of the railway bridge can produce the exact estimations of dynamic performances of the railway bridge. The damping ratio affects the dynamic reponses of the railway bridge in the vicinity of the critical speed seriously. Eurocode, National Annex of each European country and Japan have their own specification for the damping ratio for the estimation of dynamic performance of railway bridges. In our case, the specification for Honam high speed railways follows the Eurocode. In the present study, for the verification and regulation of the damping ratio and investigation of various dynamic properties, modal tests of various structural types are performed. In addition, for the investigation of effects of track structures on the dynamic property of the bridge, ballast track and concrete track are installed and tested.

  • PDF

사장교 케이블의 풍진동 해석을 통한 비선형 댐퍼의 성능 검증 (Performance Evaluation of a Nonlinear Cable Damper for Stay Cables Using Wind Vibration Analysis)

  • 김상범;이성진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.603-606
    • /
    • 2007
  • Wind induced vibration of a stay cable with a nonlinear friction damper is investigated. Stay cables are likely to vibrate under several wind-related environments, and cable dampers can be used to suppress the excessive vibrations of stay cables. Conventional design of cable dampers are based on the equivalent modal damping achieved by the cable damper. However, the equivalent modal damping achieved by nonlinear dampers are depend on the vibration characteristics like the amplitude of the vibration. In this paper, not only the achieved equivalent modal damping, but also the vibration levels under gust wind are analyzed through the time domain buffeting analysis. Numerical simulation results show the efficacy of a nonlinear friction damper for suppressing the excessive vibration of a stay cable.

  • PDF

A study of wind effect on damping and frequency of a long span cable-stayed bridge from rational function approximation of self-excited forces

  • Mishra, Shambhu Sharan;Kumar, Krishen;Krishna, Prem
    • Wind and Structures
    • /
    • 제10권3호
    • /
    • pp.215-232
    • /
    • 2007
  • This paper presents an aeroelastic analysis procedure to highlight the influence of wind velocity on the structural damping and frequency of a long span cable-stayed bridge. Frequency dependent self-excited forces in terms of flutter derivatives are expressed as continuous functions using rational function approximation technique. The aeroelastically modified structural equation of motion is expressed in terms of frequency independent modal state-space parameters. The modal logarithmic dampings and frequencies corresponding to a particular wind speed are then determined from the eigen solution of the state matrix.

구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화 (Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control Using Gradient Method)

  • 강영규
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.169-174
    • /
    • 2001
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping(2$\omega$ζ) . It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing the SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

The dynamic relaxation method using new formulation for fictitious mass and damping

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • 제34권1호
    • /
    • pp.109-133
    • /
    • 2010
  • This paper addresses the modified Dynamic Relaxation algorithm, called mdDR by minimizing displacement error between two successive iterations. In the mdDR method, new relationships for fictitious mass and damping are presented. The results obtained from linear and nonlinear structural analysis, either by finite element or finite difference techniques; demonstrate the potential ability of the proposed scheme compared to the conventional DR algorithm. It is shown that the mdDR improves the convergence rate of Dynamic Relaxation method without any additional calculations, so that, the cost and computational time are decreased. Simplicity, high efficiency and automatic operations are the main merits of the proposed technique.