• Title/Summary/Keyword: Structural Transition

Search Result 728, Processing Time 0.033 seconds

Structural and Electronic Properties of an Alkali Fulleride, $Rb_1C_{60}$

  • Lee, Hye Yeong;Jeong, Dong Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.43-45
    • /
    • 1996
  • Structural and electronic properties of an alkali metal fulleride, Rb1C60, was studied. In spite of the chain structure with shortdistance between balls along the crystallographic a-direction, the electronic structure calculation study with the X-ray defined crystal structure shows that Rb1C60 is a three-dimensional metal at room temperature. This result is different from the magnetic experiments in which the compound was found to behave as a quasi-one-dimensional metal. Partial Fermi surface nesting is supposed to be the reason for the metal-insulator transition found in Rb1C60 at ∼50 K.

Observation of Unusual Structural Phase Transition in $VO_2$ Thin Film on GaN Substrate

  • Yang, Hyeong-U;Son, Jeong-In;Cha, Seung-Nam;Kim, Jong-Min;Gang, Dae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.573-573
    • /
    • 2012
  • High quality $VO_2$ thin films were successfully grown on GaN substrate by optimizing oxygen partial pressure during the growth using RF sputtering technique. The $VO_2$ thin film grown on GaN substrate exhibited an unusual metal insulator transition behavior, which was known to be observed only either in doped sample or under uniaxial stress. Raman spectra also confirmed that metal insulator transition occurred from monoclinic M1 to rutile R phase via monoclinic M2 phase with increasing temperature. We believe that large lattice mismatch between $VO_2$ and GaN substrate may cause M2 phase to be thermodynamically stable. Optical transmittance and its electrical switching behavior were carefully investigated to elucidate the underlying physics of its metal insulator transition behavior. This study may lead to a unique opportunity to better understand the growth mechanism of M2 phase dominant $VO_2$ thin films.

  • PDF

EXAFS study for the ordering of manganese in $La_{0.7}Ca_{0.3-x}Ba_xMnO_3$

  • 양동석
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.12-12
    • /
    • 2002
  • Lanthanum manganites have been extensively studied for the application to magnetic devices since the colossal magnetoresistance of these compounds has been observed [1]. The critical temperatures, Tc, of manganites La/sub 0.7/Ca/sub 0.3-x/Ba/sub x/MnO₃ increased as the content of Ba increased except the abrupt jump near the critical concentration. The step like behavior of the critical temperature for a similar compound has been known to be related to the structural phase transition [2]. To understand the step like behavior of Tc, the EXAFS technique is applied to the La/sub 0.7/Ca/sub 0.3-x/Ba/sub x/MnO₃ compound system. The ordering between the manganese and oxygen was examined by this method. The EXAFS analysis shows that the coordination numbers were not changed before and after the phase transition, the bonding distance between manganese and oxygen is about 1.94 ± 0.02 Å, which is consistent with other work [3] and the Debye waller parameters were about σ²= 0.0037 ± 0.0005 Ų for x=0.0 and x=3.0, respectively. The value of Debye-Waller parameter for x=0.09 is about σ² = 0.0050 ± 0.0005 Ų in about phase transition concentration. Based on the Debye-Waller parameters, it is shown that the ordering between manganese and oxygen is significantly reduced near the phase transition concentration.

  • PDF

Magnetic Properties of Polycrystalline ErFe2O4 (ErFe2O4 다결정체 시료의 자기적 특성 연구)

  • Kim, J.;Lee, B.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.217-220
    • /
    • 2008
  • We have investigated the magnetic properties of $ErFe_2O_4$. Stoichiometric polycrystalline sample of $ErFe_2O_4$ was prepared by solid-state reaction method in a stream of CO/$CO_2$ gas. The X-ray power diffraction pattern shows that the diffraction peaks are indexed with respect to the rhombohedral structure with a space group of R3m. The temperature dependent magnetization for $ErFe_2O_4$ shows two-step phase transitions at about 220 and 250 K. The transition at 250 K is an antiferromagnetic transition and that at 220 K is a structural transition.

RELATIONSHIP BETWEEN RADIATION INDUCTED YIELD STRENGTH INCREMENT AND CHARPY TRANSITION TEMPERATURE SHIFT IN REACTOR PRESSURE VESSEL STEELS OF KOREAN NUCLEAR POWER PLANTS

  • Lee, Gyeong-Geun;Lee, Yong-Bok;Kwon, Jun-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.543-550
    • /
    • 2012
  • The decrease in the fracture toughness of ferritic steels in a reactor pressure vessel is an important factor in determining the lifetime of a nuclear power plant. A surveillance program has been in place in Korea since 1979 to assess the structural integrity of RPV steels. In this work, the surveillance data were collected and analyzed statistically in order to derive the empirical relationship between the embrittlement and strengthening of irradiated reactor pressure vessel steels. There was a linear relationship between the yield strength change and the transition temperature shift change at 41 J due to irradiation. The proportional coefficient was about $0.5^{\circ}C$/MPa in the base metals (plate/forgings). The upper shelf energy decrease ratio was non-linearly proportional to the yield strength change, and most of the data lay along the trend curve of the US results. The transition regime temperature interval, ${\Delta}T_T$, was less than the US data. The overall change from irradiation was very similar to the US results. It is expected that the results of this study will be applied to basic research on the multiscale modeling of the irradiation embrittlement of RPV materials in Korea.

General picture of co-nonsolvency for linear and ring polymers

  • Park, Gyehyun;Lee, Eunsang;Jung, YounJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.147-154
    • /
    • 2016
  • Co-nonsolvency is a puzzling phenomenon that a polymer swells in a good solvent individually, but it collapses in a mixture of good solvents. This structural transition with changing solvent environment has been drawing attention due to practical application for stimuli-responsive polymer. The aim of this work is to describe the physical origin of the co-nonsolvency. In this work, we present Monte Carlo simulations for polymer solutions by using simple and general model. We simulate linear and ring polymers to compare their co-nonsolvency behaviors. Calculating Flory exponents and bridging fractions gives a good description for polymer structures. While the polymer structure shows non-monotonous behavior with increasing the cosolvent fraction, the chemical potential decreases monotonously. This indicates that coil-to-globule transition of polymers is purely controlled by free energy and can be regarded as a thermodynamics transition. We also present that ring polymers have higher looping probability than linear polymers, thus the bridging fraction remains higher at high cosolvent fraction. Our study provides a new perspective to understand polymer structure when the polymer "dissolves well" in any solvent.

  • PDF

Resistive Switching Properties of N and F co-doped ZnO

  • Kim, Minjae;Kang, Kyung-Mun;Wang, Yue;Chabungbam, Akendra Singh;Kim, Dong-eun;Kim, Hyung Nam;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • One of the most promising emerging technologies for the next generation of nonvolatile memory devices based on resistive switching (RS) is the resistive random-access memory mechanism. To date, RS effects have been found in many transition metal oxides. However, no clear evidence has been reported that ZnO-based resistive transition mechanisms could be associated with strong correlation effects. Here, we investigated N, F-co-doped ZnO (NFZO), which shows bipolar RS. Conducting micro spectroscopic studies on exposed surfaces helps tracking the behavioral change in systematic electronic structural changes during low and high resistance condition of the material. The significant difference in electronic conductivity was observed to attribute to the field-induced oxygen vacancy that causes the metal-insulator Mott transition on the surface. In this study, we showed the strong correlation effects that can be explored and incorporated in the field of multifunctional oxide electrons devices.

An Exploratory Study on the Applicability of Tactics in Team Performance Evaluation

  • Jungsu MOON;Ilhyeok PARK;Nam-Su KIM
    • Journal of Sport and Applied Science
    • /
    • v.8 no.3
    • /
    • pp.21-33
    • /
    • 2024
  • Purpose: The purpose of this study is to explore, extract and categorize the team's tactical factors in soccer matches. Tactical factors are extracted on the basis of the phases consisting a football match (attack, defense, attacking transition, and defensive transition). Research design, data, and methodology: A semi-structural interviews were conducted with a group of experts of five football managers and coaches to explore tactical factors. Analysis of the content was done using a categorical aggregation or direct interpretation, and then was conducted factorial extraction and categorization. Results: In the attack phase, a direct attack and a step-by-step (occupation) attack form the type of attack, and in the attack transition phase, a long counter attack and a short counter attack form the type of attack. The type of defense in the defense phase was divided into regional defense and compression defense, and the type of defense in the defense transition phase was divided into defense for delaying counterattacks and defense for immediate pressure. Each tactics appeared differently depending on the situation of the game and the play of style. Conclusions: It may indicate the team's performance and has the potential for being used as a team performance factor. Further implications were discussed.

In situ Structural Investigation of Iron Phthalocyanine Monolayer Adsorbed on Electrode Surface by X-ray Absorption Fine Structure

  • Kim, Seong Hyeon;Toshiaki Ohta;Gang, Gwang Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.588-594
    • /
    • 2000
  • Structural changes of an iron phthalocyanine (FePC) monolayer induced by adsorption and externally applied potential on high area carbon surface have been investigated in situ by iron K-edge X-ray absorption fine structure (XAFS) in 0.5 M $H_2S0_4.$ Fine structures shown in the X-ray absorption near edge structure (XANES) for microcrystalline FePC decreased upon adsorption and further diminished under electrochemical conditions. Fe(II)PC(-2) showed a 1s ${\rightarrow}$ 4p transition as poorly resolved shoulder to the main absorption edge rather than a distinct peak and a weak 1s ${\rightarrow}$ 3d transition. The absorption edge position measured at half maximum was shifted from 7121.8 eV for Fe(lI)PC(-2) to 7124.8 eV for $[Fe(III)PC(-2)]^+$ as well as the 1s ${\rightarrow}$ 3d pre-edge peak being slightly enhanced. However, essentially no absorption edge shift was observed by the 1-electron reduction of Fe(Il)PC(-2), indicating that the species formed is $[Fe(II)PC(-3)]^-$. Structural parameters were obtained by analyzing extended X-ray absorption fine structure (EXAFS) oscillations with theoretical phases and amplitudes calculated from FEFF 6.01 using multiple-scattering theory. When applied to the powder FePC, the average iron-to-phthalocyanine nitrogen distance, d(Fe-$N_p$) and the coordination number were found to be 1.933 $\AA$ and 3.2, respectively, and these values are the same, within experimental error, as those reported ( $1.927\AA$ and 4). Virtually no structural changes were found upon adsorption except for the increased Debye-Wailer factor of $0.005\AA^2$ from $0.003\AA^2.$ Oxidation of Fe(II)PC(-2) to $[Fe(III)PC(-2)]^+$ yielded an increased d(Fe-Np) (1 $.98\AA)$ and Debye-Wailer factor $(0.005\AA^2).$ The formation of $[Fe(II)PC(-3)]^-$, however, produced a shorter d(Fe-$N_p$) of $1.91\AA$ the same as that of crystalline FePC within experimental error, and about the same DebyeWaller $factor(0.006\AA^2)$.

Structural Deformation of Tungsten Diselenide Nanostructures Induced by Ozone Oxidation and Investigation of Electronic Properties Change

  • Eunjeong Kim;Sangyoeb Lee;Yeonjin Je;Dong Park Lee;Sang Jun Park;Sanghyun Jeong;Joon Sik Park;Byungmin Ahn;Jun Hong Park
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1469-1473
    • /
    • 2022
  • Tungsten diselenide (WSe2) is one of the promising transition metal dichalcogenides (TMDs) for nanoelectronics and optoelectronics. To enhance and tune the electronic performance of TMDs, chemical functionalization via covalent and van der Waals approaches has been suggested. In the present report, the electric and structural transition of WSe2 oxidized by exposure to O3 is investigated using scanning tunneling microscopy. It is demonstrated that the exposure of WSe2/high-ordered pyrolytic graphite sample to O3 induces the formation of molecular adsorbates on the surface, which enables to increase in the density of states near the valence band edge, resulting from electric structural modification of domain boundaries via exposure of atomic O. According to the work function extracted by Kelvin probe force microscopy, monolayer WSe2 with the O3 exposure results in a gradual increase in work function as the exposure to O3. Therefore, the present report demonstrates the potential pathway for the chemical functionalization of TMDs to enhance the electric performance of TMDs devices.