Observation of Unusual Structural Phase Transition in VO₂ Thin Film on GaN Substrate

<u>양형우</u>¹, 손정인², 차승남², 김종민², 강대준¹

¹BK21 Physics Research Division, Department of Energy Science, Institute of Basic Science, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Korea, ²Frontier Research Lab., Samsung Advanced Institute of Technology, Korea

High quality VO₂ thin films were successfully grown on GaN substrate by optimizing oxygen partial pressure during the growth using RF sputtering technique. The VO₂ thin film grown on GaN substrate exhibited an unusual metal insulator transition behavior, which was known to be observed only either in doped sample or under uniaxial stress. Raman spectra also confirmed that metal insulator transition occurred from monoclinic M1 to rutile R phase via monoclinic M2 phase with increasing temperature. We believe that large lattice mismatch between VO₂ and GaN substrate may cause M2 phase to be thermodynamically stable. Optical transmittance and its electrical switching behavior were carefully investigated to elucidate the underlying physics of its metal insulator transition behavior. This study may lead to a unique opportunity to better understand the growth mechanism of M2 phase dominant VO₂ thin films.

Keywords: VO2, Metal-to-insulator transtion, Sputtering, M2 phase