• Title/Summary/Keyword: Strong wall

Search Result 443, Processing Time 0.025 seconds

A numerical study on the characteristics of flame propagation in small tubes under various boundary conditions (벽면조건에 의한 미소관내 화염 전파 특성 변화에 관한 수치해석)

  • Kim, Nam-Il;Maruta, Kaoru
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.32-38
    • /
    • 2006
  • A premixed flame propagating in a tube suffers strong variation in its shape and structure depending on boundary conditions. The effects of thermal boundary conditions and flow fields on flame propagation are numerically investigated. Navier-Stokes equations and species equations are solved with a one-step irreversible global reaction model of methane-air mixture. Finite volume method using an adaptive grid method is applied to investigate the flame structure. In the case of an adiabatic wall, friction force on the wall significantly affected the flame structure while in the case of an isothermal wall, local quenching near the wall dominated flame shapes and propagation. In both cases, variations of flow fields occurred not only in the near field of the flame but also within the flame itself, which affected propagation velocities. This study provides an overview of the characteristics of flames in small tubes at a steady state.

  • PDF

A Study On The Propagation Failure Modes of Ion Implanted Magnetic Bubble Computer Memory Devices (이온주입식 자기버블 전산기 기억소자에서의 자기버블 전파실패에 관한 연구)

  • Jo, Soon-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.339-342
    • /
    • 1988
  • Typical magnetic bubble propagation failure modes of ion implanted magnetic bubble computer memory devices were observed and their failure mechanisms were analize. The skidding failure mode is due to the pushing of a strong repulsive charged wall. If this pushing is stronger than the edge affinity of the bubble in the cusp, the bubble moves out of the cusp when it is supposed to stay there. The stripeout failure modes across the adjacent track or along the track can be explained by considering the relative strength of the charged wall and the edge affinity encountered by both ends of the stripe. The skipping of the first cusp of a track is believed to be due to the whipping motion of the charged wall. The bubble moves directly to the second cusp via the long charged wall pointing to the second cusp skipping the first cusp.

  • PDF

Effect of Well Curvature on Curved Duct Flows

  • Hong Seung-Gyu;Heo Gi-Hun;Lee Gwang-Seop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-135
    • /
    • 1997
  • Effect of wall curvature on flow characteristics is studied for mildly and strongly curved duct flows. The ducts are S-shaped, and the flow is partially blocked at the rear of the downstream. The presence of blockage in combination with curvature generates secondary flows on the concave surface; the magnitude of the secondary flow being dependent on the degree of wall curvature. Objectives are to compare the flow structures for mild and strong cases and to illuminate the changes in flow structure as the flow turns. Sensitivity on numerical solutions due to different inflow boundary conditions is also examined.

  • PDF

Blow Characteristics in Extrusion Blow Molding for Operational Conditions (압출 블로우 성형에서 성형조건에 따른 성형특성)

  • Jun Jae Hoo;Pae Youlee;Lyu Min-Young
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.233-238
    • /
    • 2005
  • Blow molding is divided into three categories, injection stretch blow molding, injection blow molding, and extrusion or direct blow molding. Extrusion blow molding has been studied experimentally to characterize the blowing behavior of parison. Blow conditions such as blowing temperature and cooling time were the experimental variables in this blowing experiment. Wall thickness of the lower part of blow molded sample was thicker than that of the upper part because of the sagging of parison during extrusion process. As temperature increases the wall thickness and the weight of blow molded sample decreased. No thickness variations in the blowing sample were observed according to the cooling time. The lower part of the sample showed high degree of crystallinity compare with the upper part of the sample. Thus the lower part of the sample was strong mechanically and structurally. It was recognized that the uniform wall thickness could not be obtained by only controlling the operational conditions. Parison variator should be introduced to get uniform wall thickness of parison and subsequently produce uniform wall thickness of blow molded product.

Design Approach of Large-scale Experimental Facilities Reflect the Load Flow (하중흐름을 통한 대형구조실험용 반력시설물의 설계)

  • Lee, Sung-Eun;Ko, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.69-77
    • /
    • 2016
  • The purpose of this study is to present a method that can estimate the height of reaction facilities for large structural experiment through load flow as primary design procedure. The characteristic of the load transmission according to the type of experiment was analyzed to obtain tensile and compressive forces occurring on the reaction facilities. Strong walls that are affected by the bending moment is applied the post-tensioning method, and the strong floor under the control of the tension and compression is designed in accordance with the load flow. And the optimum cross-section of the reaction facilities was obtained by comparing the stresses of the tensile stress and crack the concrete. Through validating elastic analysis, the design results were satisfied a given design conditions.

Evaluation of Nonlinear Seismic Response of RC Shear Wall in Nuclear Reactor Containment Building (원자로건물의 철근콘크리트 전단벽 비선형 지진응답 평가)

  • Kim, Dae Hee;Lee, Kyung Koo;Koo, Ji Mo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.385-392
    • /
    • 2021
  • Interest in the seismic performance of nuclear facilities under strong earthquakes has increased because their nonlinear response is important. In this paper, we proposed appropriate parameters for the nonlinear finite element analysis of a concrete material model, for a reinforced concrete (RC) shear wall in nuclear facilities: maximum tensile strength, dilation angle, and damage parameter. The study of the effects of the important parameters, on the nonlinear behavior and shear failure mode of the RC shear wall having low aspect ratio, was conducted using ABAQUS finite element analysis program. Based on the study results the nonlinear response of a nuclear reactor containment building (RCB) subjected to a strong earthquake was evaluated using nonlinear time-history analysis.

Two dimensional flow and heat/mass transfer characteristics in rectangular wavy duct with corrugation angle (2차 유동 영역에서 꺽임각 변화에 따른 주름진 사각 덕트에서의 열/물질전달 및 유동 특성)

  • Kwon, Hyun-Goo;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2267-2272
    • /
    • 2007
  • The present study investigates the two dimensional flow and heat/mass transfer characteristics of wavy duct with various corrugation angles. For the heat/mass transfer coefficients, a naphthalene sublimation technique is used. Numerical analysis and wall pressure measurement show detailed two dimensional flow features. The corrugation angles change from 145$^{\circ}$ to 100$^{\circ}$. The operating Reynolds numbers based on the duct hydraulic diameter vary from 700 to 3,000. The duct aspect ratio maintains 7.3. On the pressure wall, strong flow mixing enhances heat/mass transfer coefficients at the front position. In addition, the rear side of pressure wall, the near of peak, is affected by the acceleration and the shedding of main flow. On the suction wall, however, flow separation and reattachment lead to the valley and the peak of heat/mass transfer coefficient. Also, highly increasing boundary layer at the suction wall affects the decrease of heat/masst transfer. As decreasing corrugation angles, the spanwise average Sherwood number increases and the peak or the valley positions of the local Sherwood number are varied.

  • PDF

Earthquake effects on the energy demand of tall reinforced concrete walls with buckling-restrained brace outriggers

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.521-536
    • /
    • 2017
  • Reinforced concrete core-wall structures with buckling-restrained brace outriggers are interesting systems which have the ability to absorb and dissipate energy during strong earthquakes. Outriggers can change the energy demand in a tall building. In this paper, the energy demand was studied by using the nonlinear time history analysis for the mentioned systems. First, the structures were designed according to the prescriptive codes. In the dynamic analysis, three approaches for the core-wall were investigated: single plastic hinge (SPH), three plastic hinge (TPH) and extended plastic hinge (EPH). For SPH approach, only one plastic hinge is allowed at the core-wall base. For TPH approach, three plastic hinges are allowed, one at the base and two others at the upper levels. For EPH approach, the plasticity can extend anywhere in the wall. The kinetic, elastic strain, inelastic and damping energy demand subjected to forward directivity near-fault and ordinary far-fault earthquakes were studied. In SPH approach for all near-fault and far-fault events, on average, more than 65 percent of inelastic energy is absorbed by buckling-restrained braces in outrigger. While in TPH and EPH approaches, outrigger contribution to inelastic energy demand is reduced. The contribution of outrigger to inelastic energy absorption for the TPH and EPH approaches does not differ significantly. The values are approximately 25 and 30 percent, respectively.

Numerical simulations of fluid mechanical interactions between two abdominal aortic branches

  • Kim, Taedong;Taewon Seo;Abdul.I. Barakat
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.75-83
    • /
    • 2004
  • The purpose of the present study is to investigate fluid mechanical interactions between two major abdominal aortic branches under both steady and pulsatile flow conditions. Two model branching systems are considered: two branches emerging off the same side of the aorta (model 1) and two branches emerging off the opposite sides of the aorta (model 2). At higher Reynolds numbers, the velocity profiles within the branches in model 1 are M-shaped due to the strong skewness, while the loss of momentum in model 2 due to turning effects at the first branch leads to the absence of a reversed flow region at the entrance of the second branch. The wall shear stresses are considerably higher along the anterior wall of the abdominal aorta than along the posterior wall, opposite the celiac-superior mesenteric arteries. The wall shear stresses are higher in the immediate vicinity of the daughter branches. The peak wall shear stress in model 2 is considerably lower than that in the model 1. Although quantitative comparisons of our results with the physiological data have not been possible, our results provide useful information for the localization of early atherosclerotic lesions.

A Study of Bi-Static Through-Wall Imaging Radar Using a Noise Waveform (잡음 신호를 이용한 바이스태틱 벽 투과 영상 레이더 연구)

  • Ha, Jong-Soo;Cho, Byung-Lae;Sun, Sun-Gu;Lee, Jong-Min;Cho, Kyu-Gong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.654-660
    • /
    • 2013
  • This paper describes an imaging approach to detect targets behind a wall. To acquire the accurate information over the strong signals reflected by the wall and affected by multipath, a bi-static through-wall imaging radar using a noise waveform is proposed in this paper including the methodology of imaging the received signal. The complete derivation of the proposed approach is presented. And the result of tests is demonstrated to show the possibility of the proposed approach.