Tertiary Pohang basin distributed in south western part of the Korean peninsula, is composed of Chunbuk formation as the basal conglomerate, Hakjon formation, Duho formation and intrusive basalt having 15 Ma by absolute age data. The basement of the basin is represented to Cretaceous sedimentary rocks, Hakjon welded tuff and Chilpo welded tuff and rhyolite. The fault systems in the basement of Tertiary Pohang basin are consist of $N20^{\circ}E$ fault, $N60^{\circ}W$ and E-W trend. NNE fault is not only strike-slip but also normal dip-slip. WNW fault has sinistral strike-slip sense and the geometry of E-W fault is strike-slip and normal faults. In the basin, the fault system is represented to $N20^{\circ}E$ strike-slip, E-W normal and NNE thrust faults. By these fault relationship and geometry, it is interpreted that NNE sinistral strike-slip fault and N-S normal faults have acted at the Cretaceous basement. After Miocene NNE dextral strike-slip fault has acted and created E-W normal fault. Progressively Tertiary basin was influenced by the transpression to make thrust and fold, namely inversion tectonics.
Tertiary Pohang basin distributed in south weatern part of the korean peninsula, is composed of Chunbuk formation as the basal conglomerate, Hakjon formation, Duho formation and intrusive basalt which is 15 Ma by absolute age data. The basement of the basin is represented by Cretaceous sedimentary rocks, Hakjon welded tuff and Chilpo welded tuff and rhyolite. The fault systems at the basement of the Pohang basin are consist of NNE direction fault, WNW to EW trend fault. NNE fault is not only strike-slip fault but also normal fault. n fault has sinistral strike-slip sene and the EW fault is strike-slip and normal fault. In the Tertiary basin, the fault system is represented by nm strike-slip fault, EW normal fault and NNE thrust fault. By these fault relationships and geometries, it is interpreted that NNE sinistral strike-slip fault and nomal fault have acted at Creceous times. At Tertiary tines, NNE dextralstrike-slip fault and EW normal fault has created. Progressively Tertiary Pohang basin was influenced by the trenspression to make thrust fault and fold, namely as inversion tectonics.
The Yangsan Fault is one of the main fault systems in the Korean peninsula. It can be divided into three segments (northern, central, and southern) by its paleoseismic and structural geologic properties. Based on the geomorphic features of the northern segment, which includes the Yugye Fault, we identified deflected streams as a geomorphic marker of strike-slip component of the fault, and knickpoints along the streams as evidence of dip-slip component of the fault. Geomorphic analyses showed that (1) the horizontal displacements of deflected streams decreased and (2) the retreat amounts of knickpoints tend to increased toward north along the lineament. We interpreted the variations caused by strain partitioning; that is, there might be some increases of the vertical component toward north, whereas the main strike-slip fault system dies out, splaying into horsetail structure toward north. Based on the response time of the landforms, these interpretations imply that (1) there were differences between horizontal slip rate and vertical slip rate along strike, and/or (2) there were different timings between horizontal and vertical deformations by fault.
In the studies on fault dislocation of tunnel, existing literatures are mainly focused on the problems caused by normal and reverse faults, but few on strike-slip faults. The paper aims to research the deformation and failure mechanism of a tunnel under strike-slip faulting based on a model test and test-calibrated numerical simulation. A potential faulting hazard condition is considered for a real water tunnel in central Yunnan, China. Based on the faulting hazard to tunnel, laboratory model tests were conducted with a test apparatus that specially designed for strike-slip faults. Then, to verify the results obtained from the model test, a finite element model was built. By comparison, the numerical results agree with tested ones well. The results indicated that most of the shear deformation and damage would appear within fault fracture zone. The tunnel exhibited a horizontal S-shaped deformation profile under strike-slip faulting. The side walls of the tunnel mainly experience tension and compression strain state, while the roof and floor of the tunnel would be in a shear state. Circular cracks on tunnel near fault fracture zone were more significant owing to shear effects of strike-slip faulting, while the longitudinal cracks occurred at the hanging wall.
We analyzed fault plane solutions of the recent twenty-two earthquakes which occurred from 2004 to 2006 in the central part of the Korean Peninsula by using P- and S-wave polarities along with SH/P amplitude ratios. The fault plane solution shows that strike-slip fault is dominant here, especially for the events with local magnitude equal to or greater than 3.0. However, some events with local magnitude less than 3.0 show normal fault or strike-slip fault with normal components. In the case of strike-slip fault, its orientation is almost in the direction of NNE-SSW to NE-SW almost parallel to the general trend of faults, while the compressional axis of the stress field trends ENE to E-W. The result is almost consistent with the stress field in and around the Korean peninsula, as reported previously. We cannot give any appropriate explanations to the normal faulting events along the western offshore and inland areas whether it is related to the local stress changes or tectonically unidentified extensional structures. Thus, an extension of investigations is desirable to clarify the cause of such phenomena.
A new trigonometrical method for calculating total slip (T) of faulting is presented. The parameters for the calculations are used rake of fault striation, strike and dip of fault and of index planar structure such as bedding plane. The faults are groupped into three types. The direction of plunging of fault striation is out of a range ${\pm}90^{\circ}$ to the bedding dip direction in $360^{\circ}$ system, which is groupped into the type I. Meanwhile, the case of the direction lies in the above range can be separated into two different types, type II and type III, according to relative largeness of the angles rake of fault striation and i (see text). The type II has smaller rake than angle i and the type III has larger rake than angle i. Here I propose a few equations for calculating not only total slip (T) but strike slip (L) or dip slip (S) of the faulting. The equations are adapted selectively to the types of fault mentioned before. The limitation of the method is that the equations do not fit to polyphase faulting.
The Yeonghae basin is located at the northeastern part of the Yangsan fault (YSF; a potentially active fault). The study of the architecture of the Yeonghae basin is important to understand the activity of the Yangsan fault system (YSFS) as well as the basin formation mechanism and the activity of the YSFS. For this study, Digital Elevation Model (DEM) was used to highlight the marginal faults, and structural fieldwork was performed to understand the geometry of the intra-basinal structures and the nature of the bounding faults. DEM analysis reveals that the eastern margin is bounded by the northern extension of the YSF whereas the western margin is bounded by two curvilinear sub-parallel faults; Baekseokri fault (BSF) and Gakri fault (GF). The field data indicate that the YSF is striking in the N-S direction, steeply dipping to the east, and experienced both sinistral and dextral strike-slip movements. Both the BSF and GF are characterized dominantly by an oblique right-lateral strike-slip movement. The stress indicators show that the maximum horizontal compressional stress was in NNE to NE and NNW-SSE, which is consistent with right-lateral and left-lateral movements of the YSFS, respectively. The plotted structural data show that the NE-SW is the predominant direction of the structural elements. This indicates that the basin and marginal faults are mainly controlled by the right-lateral strike-slip movements of the YSFS. Based on the structural architecture of the Yeonghae basin, the study area represents a contractional zone rather than an extensional zone in the present time. We proposed two models to explain the opening and developing mechanism of the Yeonghae basin. The first model is that the basin developed as an extensional pull-apart basin during the left-lateral movement of the YSF, which has been reactivated by tectonic inversion. In the second model, the basin was developed as an extensional zone at a dilational quadrant of an old tip zone of the northern segment of the YSF during the right-lateral movement stage. Later on, the basin has undergone a shortening stage due to the closing of the East Sea. The second model is supported by the major trend of the collected structural data, indicating predominant right-lateral movement. This study enables us to classify the Yeonghae basin as an inverted strike-slip basin. Moreover, two opposite strike-slip movement senses along the eastern marginal fault indicate multiple deformation stages along the Yangsan fault system developed along the eastern margin of the Korean peninsula.
한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
/
pp.228-234
/
1998
To interpret the relationship between movement of the Yangsan fault and tectonics around the Korean peninsula, the six sequential paleostresses were reconstructed from 1, 033 striated small faults which were measured at 37 outcrops along the strike of the Yangsan fault. And, the relationship between these paleostresses of the Yangsan fault and the tectonic events around the Korean peninsula were compared. As compared with the tectonic history around the Korean peninsula, the movement of the Yangsan fault is interpreted as follows; The initial feature of the Yangsan fault was formed with the development of extension fractures by the NW-SE extension. The fault experienced a right-lateral strike-slip movement continuously. The movements had been continued until the Late Miocene age, which was the most active period in faulting. The left-lateral strike-slip movement was followed by subsequent tectonic events. In the last stage, the fault acted with a slight extension or right-lateral movement.
Zhang, Dan F.;Bie, Xue M.;Zeng, Xi;Lei, Zhen;Du, Guo F.
Structural Engineering and Mechanics
/
제75권1호
/
pp.71-86
/
2020
This paper presents a study on the mechanical behavior of buried pipelines crossing faults using experimental and numerical methods. A self-made soil-box was used to simulate normal fault, strike-slip fault and oblique slip fault. The effects of some important parameters, including the displacement and type of fault, the buried depth and the diameter of pipe, on the deformation modes and axial strain distribution of the buried pipelines crossing faults was studied in the experiment. Furthermore, a finite element analysis (FEA) model of spring boundary was developed to investigate the performance of the buried pipelines crossing faults, and FEA results were compared with experimental results. It is found that the axial strain distribution of those buried pipelines crossing the normal fault and the oblique fault is asymmetrical along the fault plane and that of buried pipelines crossing the strike-slip fault is approximately symmetrical. Additionally, the axial peak strain appears near both sides of the fault and increases with increasing fault displacement. Moreover, the axial strain of the pipeline decreases with decreasing buried depth or increasing ratios of pipe diameter to pipe wall thickness. Compared with the normal fault and the strike-slip fault, the oblique fault is the most harmful to pipelines. Based on the accuracy of the model, the regression equations of the axial distance from the peak axial strain position of the pipeline to the fault under the effects of buried depth, pipe diameter, wall thickness and fault displacement were given.
단층슬립의 기하분석에 의한 단층의 거동특성을 평가하고자 주단층의 주향변화, 단층 선단부의 발달 상태, 단층대의 폭의 주기적 변화, 단층암의 변형양상, 2차 소단층의 각관계를 근거로 양산단층의 주향을 따라 남쪽 양산에서 북쪽으로 포항시 신광면에 이르는 구간을 5개의 구역($A{\sim}E$)으로 구분하였다. 또한 가상의 단층비지를 대상으로 시행한 이전 여러 실험연구 결과들로부터 얻어진 단층작용의 운동 양상과 변형 조직과의 관계를 양산단층에 적용하고자 하였다. 단층의 미끄럼 거동을 이해하기 위하여 양산단층을 따라 단층의 자세와 단층슬립을 측정하였고, 주단층과 2차 소단층의 Riedel shear 각 관계를 분석하였다. 양산단층 각 구역에서 주단층과 2차 단열의 방향성 및 단층슬립을 이용하여 각 구역별 단층의 거동특성을 해석한 결과 A, D 및 E와 같은 직선구역들은 안정된 전단운동을 한 creeping 운동의 구역으로 평가되었고, 반대로 B와 같은 곡선구역은 stick-slip 운동을 한 locked 구역으로 평가되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.