• Title/Summary/Keyword: Strict feedback System

Search Result 31, Processing Time 0.029 seconds

Issues and Methodological Status of System Dynamics (시스템다이내믹스의 발전과 방법론적 위상)

  • 문태훈
    • Korean System Dynamics Review
    • /
    • v.3 no.1
    • /
    • pp.61-77
    • /
    • 2002
  • This paper reviews issues and methodological status of system dynamics and suggest some research agenda for its development in Korea. After reviewing some characteristics of system dynamics approach, including dynamic feedback perspective and endogenous point of view, the paper pointed out methodological characteristics of system dynamics. It seems to be the most notable characteristics of System Dynamics that it use both quantitative and qualitative approach in explaining and modelling reality. Besides, System Dynamicists rely more heavily on refutationism than instrumentalism and this allows System Dynamicists follow more strict way of scientific inquiry. For the development of System Dynamics in Korean academic circle, developing training program and curriculum, networking scattered System Dynamicist all over the country, would be the most important task.

  • PDF

Applied AI neural network dynamic surface control to nonlinear coupling composite structures

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.571-581
    • /
    • 2024
  • After a disaster like the catastrophic earthquake, the government have to use rapid assessment of the condition (or damage) of bridges, buildings and other infrastructures is mandatory for rapid feedbacks, rescue and post-event management. This work studies the tracking control problem of a class of strict-feedback nonlinear systems with input saturation nonlinearity. Under the framework of dynamic surface control design, RBF neural networks are introduced to approximate the unknown nonlinear dynamics. In order to address the impact of input saturation nonlinearity in the system, an auxiliary control system is constructed, and by introducing a class of first-order low-pass filters, the problems of large computation and computational explosion caused by repeated differentiation are effectively solved. In response to unknown parameters, corresponding adaptive updating control laws are designed. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results of linear and nonlinear structures show that the proposed method is able to identify structural parameters and their changes due to damage and unknown excitations. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.

Delay-dependent Stabilization of Singular Systems with Multiple Internal and External Incommensurate Constant Point Delays

  • Xie, Yong-Fang;Gui, Wei-Hua;Jiang, Zhao-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.515-525
    • /
    • 2008
  • In this paper, the problem of delay-dependent stabilization for singular systems with multiple internal and external incommensurate constant point delays is investigated. The condition when a singular system subject to point delays is regular independent of time delays is given and it can be easily test with numerical or algebraic methods. Based on Lyapunov-Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient condition for delay-dependent stability is obtained. The main idea is to design multiple memoryless state feedback control laws such that the resulting closed-loop system is regular independent of time delays, impulse free, and asymptotically stable via solving a strict linear matrix inequality (LMI) problem. An explicit expression for the desired memoryless state feedback control laws is also given. Finally, a numerical example illustrates the effectiveness and the availability for the proposed method.

ROBUST OUTPUT FEEDBACK $H\infty$ CONTROL FOR UNCERTAIN DELAYED SINGULAR SYSTEMS

  • Kim, Jong-Hae;Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.513-522
    • /
    • 2006
  • This paper considers a robust output feedback $H\infty$ controller design method for singular systems with time-varying delay in state and parameter uncertainty in system matrix by an LMI approach and observer based technique, which can be solved efficiently by convex optimization. The sufficient condition for the existence of controller and the controller design method are presented by strict LMI(linear matrix inequality) approach. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables.

Design of an Adaptive Backstepping Speed Controller for the Wind Power Generation System (풍력발전시스템의 적응백스테핑 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.211-216
    • /
    • 2005
  • In this paper a robust controller using adaptive backstepping technique is proposed to control the speed of wind power generation system. To make wind power generation truly cost effective and reliable, advanced and robust control algorithms are derived to on-line adjust the excitation winding voltage of the generator based on both mechanical and electrical dynamics. This method is shown to be able to achieve smooth and asymptotic rotor speed tracking, as justified by analysis and computer simulation.

Resolved Motion Control of the Robot Manipulator using Neural Network (신경회로망을 이용한 로보트 매니츌레이터의 Resolved Motion제어기의 설계)

  • 송문철;조현찬;이홍기;전홍태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.5
    • /
    • pp.519-526
    • /
    • 1990
  • In this paper we propose the resolved motion controller using a neural network for a robot manipulator. Neural identifier designed by a neural network is trained by using a feedback force as an error signal. The identifier approximates the output of a unknown nonlinear system by monitoring both the input and the output of this system. If the neural network is sufficiently trained well, it does not require either strict modelling of the manipulator or precise parameter estimation. The effectiveness of the proposed controller is demonstrated by computer simulation using a two-link planar robot.

  • PDF

Global Chaos Synchronization of WINDMI and Coullet Chaotic Systems using Adaptive Backstepping Control Design

  • Rasappan, Suresh;Vaidyanathan, Sundarapandian
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.293-320
    • /
    • 2014
  • In this paper, global chaos synchronization is investigated for WINDMI (J. C. Sprott, 2003) and Coullet (P. Coullet et al, 1979) chaotic systems using adaptive backstepping control design based on recursive feedback control. Our theorems on synchronization for WINDMI and Coullet chaotic systems are established using Lyapunov stability theory. The adaptive backstepping control links the choice of Lyapunov function with the design of a controller and guarantees global stability performance of strict-feedback chaotic systems. The adaptive backstepping control maintains the parameter vector at a predetermined desired value. The adaptive backstepping control method is effective and convenient to synchronize and estimate the parameters of the chaotic systems. Mainly, this technique gives the flexibility to construct a control law and estimate the parameter values. Numerical simulations are also given to illustrate and validate the synchronization results derived in this paper.

A QoS-aware Scheduling Algorithm for Multiuser Diversity MIMO-OFDM System (다중 사용자 MIMO-OFDM 시스템에서의 QoS 제공을 위한 스케줄링 기법)

  • An Se-Hyun;Yoo Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.717-724
    • /
    • 2006
  • In order to maximize the throughput and provide the fairness between users in MIMO-OFDM system, FATM(fairness-aware throughput maximization) scheduling algorithm was proposed. In this paper, a QoS-aware scheduling algorithms for MINO-OFDM system are proposed, each of which is based on FATM. These scheduling algorithms aim to satisfy the different service requirements of various service classes. Three proposed QoS scheduling algorithms called SPQ (Strict Priority Queueing), DCBQ (Delay Constraint Based Queuing), HDCBQ (Hybrid Delay Constraint Based Queuing) are compared through computer simulations. It is shown that HDCBQ algorithm outperforms other algorithms in satisfying different requirements of various service classes.

On Neural Fuzzy Systems

  • Su, Shun-Feng;Yeh, Jen-Wei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.276-287
    • /
    • 2014
  • Neural fuzzy system (NFS) is basically a fuzzy system that has been equipped with learning capability adapted from the learning idea used in neural networks. Due to their outstanding system modeling capability, NFS have been widely employed in various applications. In this article, we intend to discuss several ideas regarding the learning of NFS for modeling systems. The first issue discussed here is about structure learning techniques. Various ideas used in the literature are introduced and discussed. The second issue is about the use of recurrent networks in NFS to model dynamic systems. The discussion about the performance of such systems will be given. It can be found that such a delay feedback can only bring one order to the system not all possible order as claimed in the literature. Finally, the mechanisms and relative learning performance of with the use of the recursive least squares (RLS) algorithm are reported and discussed. The analyses will be on the effects of interactions among rules. Two kinds of systems are considered. They are the strict rules and generalized rules and have difference variances for membership functions. With those observations in our study, several suggestions regarding the use of the RLS algorithm in NFS are presented.

The Design and Implementation of TDD-OFDMA Feedback Signal Cancellation(FSC) Digital RF Repeater (TDD-OFDMA 방식의 귀환 신호 제거 디지털 RF 중계기 설계 및 구현)

  • Ryoo Gyoo-Tae;Kim Dae-Yen;Park Se-Jun
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.57-61
    • /
    • 2006
  • As high speed internet users are tremendously increasing, three are keenly in need of development of high speed portable internet technology which can provide high quality wireless internet service cheaply even in the mobile. Unlike the FDD-CDMA, TDD-OFDMA has relatively poor wave environment with inducing interference, fading and delay because it agrees to multi-carrier modulation method and time-division radio telecommunication system. To solve this problem, it is necessary to develop repeater operating by digital signal processing method which have more strict wireless channel control and wave signal processing technology over TDD telecommunication equipments. This thesis is dealing with design and implementation of Digital RF Repeater which implemented 'Synchronization Acquisition Unit', 'TDD signal switching Unit', 'Feedback Signal Cancellation Unit'. Over this argument, we will develop digital RF repeater with more cheap, more adaptive in wave environment like oscillation control, adaptive wave monitoring and output increasing and having control function as a result it will be helpful for success in high speed portable internet service business.

  • PDF