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and External Incommensurate Constant Point Delays
Yong-Fang Xie, Wei-Hua Gui, and Zhao-Hui Jiang*

Abstract: In this paper, the problem of delay-dependent stabilization for singular systems with
multiple internal and external incommensurate constant point delays is investigated. The
condition when a singular system subject to point delays is regular independent of time delays is
given and it can be easily test with numerical or algebraic methods. Based on Lyapunov-
Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient
condition for delay-dependent stability is obtained. The main idea is to design multiple
memoryless state feedback control laws such that the resulting closed-loop system is regular
independent of time delays, impulse free, and asymptotically stable via solving a strict linear
matrix inequality (LMI) problem. An explicit expression for the desired memoryless state
feedback control laws is also given. Finally, a numerical example illustrates the effectiveness and
the availability for the proposed method.
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1. INTRODUCTION

Singular systems contain a mixture of differential
and algebraic equations, where the algebraic equations
represent the constraints imposed on the solution of
the differential part. Such systems (sometimes also
referred to as descriptor, degenerate, implicit or semi
state and generalized state space systems) describe a
broad class of systems which are not only of
theoretical interest but also have great practical
significance. Models of chemical processes, for
example, typically consist of differential equations
describing the dynamic balances of mass and energy,
and  additional  algebraic  equations  giving
thermodynamic equilibrium relations, steady-state
assumptions, empirical correlations, etc. [1]. In
mechanical engineering, singular system descriptions
result from homonymic and non-homonymic
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constraints [2]. Also in electronics and even in
economics, singular systems descriptions exist [3].

It is difficulty to deal with such singular systems
analytically and numerically due to their nature
complex, particularly in control system design for
them. In the past years, analysis and synthesis
problems of singular systems have been extensively
studied due to the fact that the singular systems
provide a more complicated, yet richer, description of
dynamical systems than the standard state-space
systems [4-9]. Furthermore, the study of the dynamic
performance of singular systems is much more
difficult than that of standard state-space systems
since singular systems usually have three types of
modes, namely, finite dynamic modes, impulsive
modes and non-dynamic modes [5], while the latter
two do not appear in the state space systems.

Delay systems have attracted many attentions over
past decades since time delay is one of the main
causes for instability and poor performance of many
control systems and are frequently encountered in
many industrial processes such as in the steel industry,
oil industry, etc. [10]. Delays may be classified as
point delays or distributed delays according to their
nature, and can also be classified as internals (i.e., in
the state) or externals (i.e., in the input or output)
according to the signals that they influence. Point
delays may be commensurate if each delay is an
integer multiple of a base delay or, more generally,
incommensurate if they are arbitrary real numbers
[11]. The presence of internal delays leads to a large
complexity in the resulting system dynamics since the
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whole  dynamical systems become infinite-
dimensional. In addition, this fact increases the
difficulty when studying basic properties, such as,
controllability, observability, stability and stabiliza-
tion, compared to the delay-free case since the transfer
functions consist of a transcendent numerator and
denominator quasi-polynomials [12]. Due to these
reasons, the stabilization of multiple internal
incommensurate constant point delay systems is much
more challenging than that of the delay-free case [13].

Time delays have naturally an effect on the
dynamics of singular systems. It is concluded that
their dynamics would be more complex because time
delays may exist in the differential equations and / or
algebraic equations. Singular delay systems, which are
those where the delays influence the system’s
behaviours such as regularity, impulse, asymptotical
stability and so on, present even a higher analysis and
design difficulty. It should be pointed out that the
stability problem for singular time delay systems is
much more complicated than that for regular systems
because it requires to consider not only the
asymptotical stability, but also regularity and impulse-
free at the same time [14]. The latter two need not be
considered in regular systems. Very recently, a great
effort has been devoted to the investigation of the
stability and stabilization problem of singular time-
delay systems [15-26], which are the general form of
delay systems. However, to the best of authors’
knowledge, there are few contributions on the
problems of delay-dependent stabilization of singular
linear continuous-time systems subject to multiple
internal and external incommensurate constant point
delays (SLCS-MIEID). This fact motivated the
authors to develop delay-dependent controllers for
SLCS-MIEID based on state feedback control.

The present paper provides an approach for stability
analysis of SLCS-MIEID. To prove the stability, we
introduce the descriptor integral-inequality which can
be used to study the delay-dependent stabilization
problems of singular time-delay systems. Using the
Lyapunov-Krasovskii functional technique combined
with LMI techniques, we design a state feedback
controller for singular time-delay system, which
guarantees that the closed-loop system is regular,
impulse free and asymptotically stable. The delay-
dependent stability criterion is derived in terms of
LMIs, and the solutions provide a parameterized
representation of the state feedback controller. The
LMIs can be easily solved by various efficient convex
optimization algorithms.

The rest of the paper is organized as follows. In the
second section, a mathematical model for SLCS-
MIEID is introduced and at the same time the
necessary background for the stability of such systems
is also given, The regular independent of time delays
problem is also discussed in this section. In the

section 3, by employing the descriptor integral-
inequality lemma, sufficient conditions for delay-
dependent stabilization are deduced based on
nonlinear matrix inequality (NLMI), which are
associated with the time delays and can not be solved
directly. From the viewpoint of LMI, the design
method of state feedback control law is summarized.
An example is presented in the section 4 to illustrate
the effectiveness of the proposed method.

Notation: Throughout the paper the subset of the

integers j= {0,1,- . -,n} represents any integer
n=0, the superscript ‘T’ stands for the transpose of a
matrix. R and C are the sets of real and complex
numbers, respectively. /2" denotes the n-dimensional
Euclidean space, & is the set of all nxm real

matrices, and the notation P>0 for PeR™"
means that P is symmetric and positive definite.
and 0 denote the appropriately dimensioned identity
matrix and Zero matrix, respectively.
diag{--} denotes a block-diagonal matrix. The

symmetric terms in a symmetric matrix are denoted
b X Y X Y
* o e.g., = .
y & |, AR

2. PROBLEM STATEMENT

Consider the following singular linear continuous
time system with ¢ internal and ¢' external

incommensurate constant point delays described by

Ei(r)= Y. Aix(t-;) o B (e- 1),

=0 (1)

where x(t) eR" and u; (t) e R&™ are the state and
control input vectors, respectively, and 4; ( Jj=0,1--,
q), B;(j=0,1,:+,q") are real matrices of compatible
orders with the dimensions of those vectors, and
hi(j=1.q), k;(j=1,-.q") are the g internal
and ¢' external point delays respectively. The zero

delays fy =hy =0 corresponding to the delay-free

dynamics and current delay-free input are added for
notational simplification convenience. ¢(¢) is a

compatible vector valued continuous different initial
function. The maximum delays 4 and #' are

defined as h=maxc;, (hj) and h'=maxc <, (h})

The singular matrix EeR™" with rank(E)=r

<n gives the singular character to system (1)
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compared to the case £ =/, (standard system).

The unforced singular delay system of (1) can be
written as

q
Ex(t)= Agx(1)+ ) A;x(t - h)). 2)

=

It is well known that a singular system has a more
complicated structure and contains not only finite
dynamical modes (exponential modes), but also
infinite frequency modes, including infinite non-
dynamical and dynamical modes that may generate
undesired impulse behaviours, they should be
eliminated. In order to guarantee that the system (2} is
regular and impulse-free, the following definition and
lemmas are given.

Definition 1: The system (2) is said to be regular if
there exists a constant se€C such that

q
-h;s
SE - Z 4;e 1#0.
Jj=0
The Definition 1 is not easy to test because the term

q
—hs . .
sE —ZA e/ N0 depends on the internal point
j=0

delays /;(j=1,-,q). An alternative characterization

of regularity is given as follows. First, the generic
rank {(gr) in C of a complex matrix Q(s) i8

defined as gr.(Q()s)=max ¢ (rank[Q(s)]). The

following theorem presents a condition for regularity
of the system (2) which is equivalent to Definition 1.
Theorem 1: The system (2) is said to be regular

independent of the delays h;(j=1-,q) if the
rank}:E,ijzn where Z}»:[AO,ZJ;J with Zﬂ:
[AI’AZ’“"AL]]'

Proof: From Definition 1, a straight forward
calculation yields

L —hs
SE=) dje

=0 €)

) —}?IS —th i
=B A x| slyy=Lp=e Ly e =0T |

Thus, dseC:

d ~h.s
sE — Z Aie 7/
j=0

from {(3) we can get that

#( isequivalent to rank[F, A j]=

. _lus —hs
n. Since rank[s/,,—1,,—e V1 ,,---,—e I, ]=nVs

g9 . _
eC then gr, [SE - Z 4;e "y }: rank[E, 4;]
=0

—_— g —h:s
So, rank[E,A;]znzg.r.seC sE—ZAje T l=n
J=0

= #0 for seC and Theorem 1

A *hjs
SE-) Ae
j=0

is proved.

Lemma 1 [16]: Suppose the pair (E,4,) is said
to be regular and impulse free, then the solution to (2)
exists and is impulse free and unique on [0, ).

Lemma 2 [27]: The singular system Ex{f)=
Ayx(t) 1is regular, impulse free and stable if and only
if there exists a matrix P such that EPT = PET >0
and PT 4y + AL P <0.

Lemma 3 [28]: For a given matrix 4eR™",
there exists any full rank matrix PeR™" or
Qe R™" suchthat rank(4) = rank(P4)=rank(4Q).

Lemma 4 [29]: Forany acZ™, beR™, Ne
R X e RN Y e RN and Z e R,
the following inequality holds

o Tal'Tx vY-NT[a
-2a Nb< )
bi|* Z ||b
where
>0.
A
For system (1), we suppose that the state is

available for feedback and the following memoryless
state feedback controllers are adopted:

u;()=K;x(t), j=0,1q" )

When we apply control law (4) to system (1), the
resulting closed-loop system is given by

‘ q g _ '
Ex(t)=jZ:;,}AjX(f‘h;)+é)fo({_hf ) )

j
XO)=§(e), 1e[-max{hi'},0],

where Ej =B,K;(J =0,L---,9).

The aim of this paper is to develop a new delay-
dependent stabilization method that provides the
control gain, K., of the control law (4) such that the
closed-loop system (5) is regular, impulse free and
asymptotically stable. For this purpose, the following
lemma is introduced.

Lemma 5: Let x(rf)e " be a vector-valued
function with first-order continuous-derivative entries.
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Then, the following descriptor integral-inequality
holds for any matrices £, M;, M,, Y, and X =

xT >0, andascalar 2>0

to.T T . T
- It_hx ()ET XEx(s)ds < ET (1) Y () ©
+hE YT XY @),

where
e MIE+E"M, -MIE+E"M,
' . ~MIE-E"M, |

)= [xé(j)hJ v=[M My

Proof: From the Leibniz-Newton formula
t 0
0=x(t)-x(t-h)- | , E(s)ds. (7

So, for any N;, N, € #""" the following equation
holds '

0=2x"(E"N +x"(1—h)E"NJIE

; 8
x[x(t)—x(t—h) - j . )'c(s)ds} ®)

=T WN'IE - B2 &M 0N Eias,

where N :=[N\E N,E]. Applying Lemma 4 with
a=Ex(s),b=&(t), and Z=Y"X"Y yields

2| ;_h ET (N Bx(s)ds

. I, [Ex(s)T X Y-N {Efc(s):lds
RS ] | YTxr LS ©9)

- I;—h £ ET (s)XEx(s)ds + th (f)YTX_lY,f([)

+2£7 (t)(YT -NT )[E ~E]&).
Substituting (9) into (8) gives us
- jj_hch ET () XEx(s)ds < hET ()Y T XY E(r)
+28TOYT[E -E]&@). (10)

After a simple rearrangement, (10) yields (6). This
completes the proof.

Remark 1: (6) is called a descriptor integral-
inequality. It plays a key role in deriving of a criterion
for delay-dependent stabilization in this paper. When
E=1, the descriptor integral inequality (6) is
equivalent to the integral inequality in [30]. Therefore

Lemma 5 is an extension of Proposition 3 in [30].
3. MAIN RESULT

This section addresses the delay-dependent
stabilization sufficient conditions obtained by means
of the descriptor integral-inequality method. The
following theorem is obtained for system (5).

Theorem 2: For given scalars #>0 and 4" >0,

if there exist symmetric and positive definite matrices
X=xT>0, Y, :)f].T >0(j=Lq), Y] =},}T S
0(j=1.9") R=R'>0, R=R">0, and any
matrices M,;, My; (j=1,-,q) and Mj;, My (j=1,
---,¢") such that

rank[E, Ty |=n, (11)
EXT =XET >0, (12)
‘= ghTy  gHTy  RHT
« —ghR™! 0 0
x o« —gWRT 0
* * * —hR
|17 . . .
* £ * *
* * * *
L * * * *
MY e |
0 0 - 0
3 .. . <o,
“hR 0 0
x  -hR
* * * _h'R‘_

(13)
where

1) m, I Iy |

- 0 0 0

* * :

== = * * —]_Iq 0 ,

* * * L | 0

* * * * * . :
T | Y
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(L1)= X (4y+By) +(4+By)' X

d A ’ g T A /T
+ DYDY DM+ M E
| j=1 =
| q
+E | D M+ M,
j=1 j=1
_ T T
T T .
I, =Y, + M} E+E"My,,  j=l-g,
" vD T T 3 zr
I, = XB, - M{TE+ ETMj,,
' ' /T T s . '
Hj=Yj+M2jE+E sz, ]21,"',(],

To=[4+B, 4 - 4, B - Byl
H, =M, L u},
q,
L““'[”lj SR rqi}’
Hj=|Mj; 0 - 0 L'],
q

SUR
’}j:{]\(/izj;.];ii’ Lj=1,q,

Ty “{AZZJJJ;I hj=1g,

then the closed-loop system (5) is regular independent
of the delays and impulse free and asymptotically
stable.

Proof: Suppose (11)-(13) hold for X=XT>0,
Y; =¥ >0, /=¥ >0, R=R">0, R'=R" >0,
My;, My;, Mi;, My; then from (13) it is easy to see
that

X (4 +By)+(4 +B) x <0. (14)

By Theorem 1, Lemma 1 and Lemma 2, it follows
from (11), (12) and (14) that system (5) is regular

independent of the delays and the pair (E ,Ag + Eo) is

regular and impulse free.

Next, we shall examine the stability of system (5).
To this end, we choose a Lyapunov-Krasovskii
functional candidate as

V(t)=V(t)+V, (1),
with

A= ()8 + 3 [1 5 ($)1e(s)es
SN RIS

502 [ L (DR
+é J fh, [0 " (s)E" R'Ei(s)dsdo,

where X=X">0, ¥;=Y] >0, ¥/=¥;">0, R=

RY>0 and R'=RT >0 are to be determined.
Then, the time derivative of V(¢) along the

trajectory (5) satisfies

ORANEAG!

where
7y (1) =22 (1) B (1) + " <r>[2n+iw]x(r)

M=

(1=t )Vyx(e =)

~
L
—_

S (- h (- ) (15)
=1
=1 (1)En(t),

t)E"REx(t)+ q''5" (1) E"R'Ex(1)

oy
—_
S
~—
11
B
o<
—
—_

¥ [* 5" (s)E" RES(5)ds

(16)
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(1Y), X4 - X4, XB XB,
* -h -0 0 0
Eo= * * * _Yq 0 0 |,
* * * * _Yi’ 0
* * * * *
] * ® * * * * —YqC |
_ T q q
(L1), =X (4 + By )+ (A +By) X+DV,+D.,
j=l - jAl

It is clear that the following is true

—i [, " (s)E"REx(s)ds

J=1

(17

Applying Lemma S to the term on the right-hand
side of (17) for any M,;, M,;, M{;, M5; e ™",
yields

q

_ZL h;

Jj=
g .
_Z It h’
q
<SE() (1) +he] () PTRPE (1)

Jj=l

eS80 0 TR R )

s)E" REx(s)ds

s)ETR'Ex(s)ds

Jj=1
T g Ty p-1 & T -1
=n' (¢)| B+ D2 H;hRH,; + Y H WR™H) |n(t),
j=1 7=l
(18)
where
ME+E"M;; ~MLE+E"M,;
Y. = ,
’ * ~MJ,E-E"M,;

T /T T a st
" MTE+E™M]; ~M{TE+E sz}

J'L "

~MyE-E"Mj; |

(11) T, T, T Ty |
I 0 0 0
E=| » x - T, 0 0 |,
* * * T 0
z T Z /T T L & ’
=| DM+ M |E+E | Y M+ M |,
J= j=1 j=1 J=l

T, =-M E+E"M,,,
[,=-M,E-E'M,;, j=1-4,
T, =-M{ E+E"Mj,,
I =-MJE-E"Mj;, j=1-.q

Substituting (17) and (18) into (16) gives us

Vo (1) <n" ()| 5 +T) ghRT, + Ty ¢'H'R'T,

q T —] q, !T ’ I*l !
+ > H hRH; + > H R H |n(t).

j=1 j=1
(19)
Combining (15)-(19) yields

V(t)<n" (1)(E+T] ghRTy +T) g WR'T,

q q'
+Y HAR™'H; + ZH;.Th'R"IH'j]n(z),
j=l j=1
(20)
where E=E, +&;.

From (20), we find that, if (13) holds, then applying
the Schur complement [31] yields V(¢)<0. Thus,
according to the Lyapunov-Krasovskii functional
theorem [32], we can conclude that (5) is
asymptotically stable. This completes the proof of
Theorem 2.

As K;(j=0,1---,q") are design matrixes, ¥ is

nonlinear in the design parameters K and X, the
R’ and

R, Thus in this case (13) can not be solved
directly by LMI toolbox. In order to obtain a

nonlinearities also come from R and R‘l,
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controller gain, K., from the nonlinear matrix

inequality (13), we give the following theorem.
Theorem 3: For given numbers 2>0, A'>0,1 >

p;#0(j=1,-,q) and 4}, u;#0(j=1--,q), if

there exist symmetric and positive matrices ¥;
(j:L"'aq)a z;(jzoala”qu)a E, R, and any

matrices K;(j=0,1,--+,4) such that

rank[EaAO)—,g +BOE09AI5”"AquIEh

_ @n
o, ByK 1=n,
YeET = EYj 20 (22)
o gl qwQl AN o AND AN
* —qhR 0 0 - 0 0
x x  —ghR" 0 . 0 0
£ £ -hR - 0 0
3 * * * —-hR *
% * * * x  -W'R
* * * %k * *
% * £ 3 * * *
* % * * * *
* * * * * *
_* * * * ES *
Rtil [ v’ v vt 7
KNS 7 7
0 0
0 0 0 0
0 0 0
0 0
0 0 0
-H'R" 0 0 0
* _)71 0
* * -Y, 0
* #® S A 0
* ES
* * * * _Yq‘,~
<0, (23)

where
Qp Iy v Ly I o Ly
% _221 0 0 0
Ql = * ® “‘qu 0 mee 0 N
* * * _2’2! 0
* ® .. * * _E’ZQ’

_ .-l v -1y T -2y
5y = 4547, +(Y0+Ajyj Yj)E 2,057, 2y
T s A W,
= B+ TE )+ 47T, j =10,
| 7 v’ N 2 T r =257 v
%y = 5 B+ (TG + 2 Yj)E B (B

S| o, T =25 . '
= u (BT +TE )+ w77, =10,

_ _ q _ g _
Qp =(4% ‘LBOKO)‘;%/‘J_'IA;Y;‘Z}’i}'ﬂ}_IBjKj’
Jj= j=
. 4 _
+[(A0Yo‘+BoKo)—Zﬂ»ju;‘Af%
j=1

q e = T q = q e
=D Ay BK | =D A Y =Y Y
= = j=1
17 7 lpE
Qz"‘-[Qzl o AY e AT BiK,

—1 %4
T My Bq'Kq']’

q q
S 7 - -1 v =1 >
Qyy =(4pY5 + BoKo )= D Aiu5 4,1 = Y Aip T BIK
=]

= =
F
N;={0 L 0 O,Lz[rlj SH A Fq,],
L q
N}: 00 0 L' }4,:,:ﬁj }T-y' ?q,_:}’
L q
— E,j-_—i R E’,j:l.
= is :1)“'5 ] ;ﬂ: ia = [ ,,
v {o,jm', e {0, jei, T

then the memoryless state feedback controller (4)
guarantees that the closed-loop system (5) is regular
independent of the delays, impulse free as well as
asymptotically stable. The controller gains K; can

be obtained by solving (21)-(23) and K j =Kj}7}_l

j :O,l’...’q"
Proof: To cast the problem of designing a
stabilising controller (4) into the LMI formulation, we
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let }70’:X-l’ E:Y?l(jzl,-..
g, ]Zj:
R Define a full

,Q), }_’jf:)’]f_](jZI,
7). R=k', F=

rank matrix P =diag

I v 11771

7 s then [E, TOJPz

q
[E, 475 + ByKo, 4+, 4,, BKy,,B,K, |. From

Lemma 3, we can conclude that rank([E, TO]P)

:rank([E, Toj)zn. That is to say (21) is

equivalent to (11). By pre- and post-multiplying (12)
by ¥;, we can conclude that (22) is hold. Due to

EXT=XET 20 and define the following matrices
W:]ﬁX 0:%3 Z=|:AO_+E0 AH}
m m % PR T

q
U:dlag{i Z }i, . Yi”,..’_)lq',}’
IR

T
T T T /T
Wl:[Mll Mg My Mk?'] ’
W2:diag{sz”':MZq’Mél’“"Méqt}’
IEPRVA I )

T
do=|ET . ET ET .. E'|,
IR 7
,'4713=diag -E -« —-E -E -E},

q q
then

Hy=[0 7 0 = 0, V=[v; vy vy,
L q
H}ZLO 0 o 0 VW V=]V v vy s
9

Now, we consider the case where M, j :AS-X ,

My;=pY;, My =X, My =pY,

e ,Uj¢0,

and ,u}- #0. Inthis condition, W is invertible, and

_1 — 1 !
—/lqﬂq Y z%‘ﬂl Y
T
A IY ]
T . -5 v
W2 :dlag{;ul Ylv . ,,Uq K];ﬂl [ RN q’ Yq}
Define

T:diag{W",I,I,R_1,~~~,R'1,R’_1,---,R’_l},

then
(L), ghQl gwal ANT
* —ghR 0 0
* * —-q'WR 0
* * * —hR
TT\I]T: . . . -
* * * *
* * * *
% * % *
T T mrtT ]
AN, h'Nj th»
0 0 0
0 0 0
0 0 0
-hR 0 0
* -KWR 0
* * _k’ﬁ’_
<0, (24)
where
(L1, Iy S Iy Zg |
S 0 0 0
(L), =| = * “Zy, 0 0 |,
% * * * _ZEZq

— — 7 _
(L1); = (40T + BoKo )~ 2 407 4,7,
J=1
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q! — J— o
- ﬂ}y}lejKj + {(AOYO +BOK0)
j=1

) T
g g
-1 v | 7
=2 Ay AY =Y A BjKj]
j=1 7=l
g -1y A v =157 | g A v
DRIIRIEDW AT RS DR DR
J=1 J=1 J=1 Jj=1
and X, Ty, X, Xy, N;, N, Q) are defined in
Theorem 3.

Therefore, (24) follows from (23). From this
derivation, we conclude that, if there exist symmetric

and positive matrices }7j(j=1,---,q), I7Jf(j:0,1,
+q"), R, R and any matrices Ej(j=0,1,~-,q')
satisfying (21)-(23), then the following symmetric and
positive matrices X, ¥;(j=1,.q), ¥;(j=1,.,¢"),
R, R, any matrices M;;, My (j=1,--,q) and
M, My (j=1--,q") satisfy (11)-(13). So, the
resulting  closed-loop system (5) is regular
independent of the delays, impulse free and
asymptotically stable. The desired controller is
defined by (4) with Kj:KjYJf‘l(j:O,l,---,q').

This completes the proof of Theorem 3.
4. NUMERAL EXAMPLE

This section presents a numerical example that
demonstrates the validity of the results described
above. Consider a SLCS-MIEID system (1), with
parameters as

1 00 02 01 -05
E=10 1 0], 4 ={025 -03 02,
0 00 0 1 0.8
(04 02 -06 1
4= 0 -05 0 |, By=|0],
|0 0 -2 0
[0 0
B =|1|, B,=|0
0

In this example, we assume that the maximum point
time delays are #=2.46 and A'=0.4. The purpose
is to design a state feedback control law such that the
resulting closed-loop system is regular independent of
the delays, impulse free and asymptotically stable. To
this end, we choose

A =-1.8953, A4 =-1.4451, A, =-0.3451,
4 =14.7388, 14 =0.3654, ) =31.3654.
Using Matlab LMI Control Toolbox to solve the

feasible problems (22) and (23), we obtain the
solutions described as

0.2780 0.0105 -0.0012

Y =| 0.0105 0.2547 0.0594 |,
-0.0012  0.0594 0.0176
212.3690 -0.3692 0

Yy =| -0.3692  0.6366 0 |

0 0 15235
0.2466  —0.0001 0.0011 |

Y =|-0.0001 0.1960 —0.0084 |,
0.0011 —0.0084 0.0309 |
0.1226  -0.0019  0.0002

%' =[-0.0019 0.1290 -0.0059 |,
0.0002 -0.0059 0.1644
0.5044 —0.0019 -0.0012

R=|-0.0019 04762 -0.0012],
-0.0012 -0.0012  0.3984
0.1483  -0.0006  0.0003

R'=|-0.0006 0.1430 -0.0006 |,
0.0003 -0.0006 0.1142

Ky =[-10.1349 -15.0689 -5.0311],
K, =[-8.9865 -1.0730 -3.0083],
K, =[-7.0335 -4.6161 -9.0921].

Therefore, by Theorem 3, a stabilizing state
feedback control law can be obtained as:

uy(1)=[-353014 —70.9122 -77.1641]x(r),
u =[-36.0052 —9.7236 —98.7176]x(¢),
uy =[-57.8850 -39.2269 —56.6421]x(¢).

It is easy to check that the conditions given by (11),
(12), and (14) are satisfied. Hence, according to
Theorem 1-Theorem3, the closed system (5) is regular
independent of the delays and impulse free.

5. CONCLUSION

In this paper, the delay-dependent stabilization
problem of SLCS-MIEID has been studied. The main
contribution of this study is to obtain the control law,
which can delay-dependent stabilises singular time-
delay time-invariant systems. This is done by using
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Lyapunov-Krasovskii  functional  approach

combined with a descriptor integral-inequality. The
numerical example shows that the proposed controller
can achieve desired design purposes.

[1]

(2]

(3]

(4]

(3]
(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

REFERENCES
A. Kumar and P. Daoutidis, “Control of
nonlinear differential algebraic equation systems:
An overview,” Proc. of the NATO Advanced
Study Institute, pp. 311-344, 1998.
R. Ansgar and A. Frank, “General quadratic
performance analysis and synthesis of
differential algebraic equation (DAE) systems,”
Journal of Process Control, vol. 12, no. 4, pp.
467-474, June 2002.
D. J. Luenberger, “Nonlinear descriptor
systems,” Journal of Economics Dynamics and
Control, vol. 1, no. 3, pp. 219-242, August 1979.
J.  Stefanovski, “LQ control of descriptor
systems by cancelling structure at infinity,”
International Journal of Control, vol. 79, no. 3,
pp. 224-238, March 2006.
L. Y. Dai, Singular Control Systems, Springer-
Verlag, New York, 1988.
J. Wang, V. Sreeram, and W. Liu, “An improved
H,, suboptimal model reduction for singular
systems,” International Jowrnal of Control, vol.
79, no. 7, pp. 798-804, July 2006.
G. C. Verghese, B. C. Levy, and T. Kailath, “A
generalized state-space for singular systems,”
IEEE Trans. on Automatic Control, vol. 26, no.
4, pp. 811-831, August 1981.
R. Yu and D. H. Wang, “Structural properties
and poles assignability of LTI singular systems
under output feedback,” Automatica, vol. 39, no.
4, pp. 685-692, April 2003.
J. Y. Ishihara, M. H. Terra, and R. M. Sales,
“The full information and state feedback H,
optimal controllers for descriptor systems,”
Automatica, vol. 39, no. 4, pp. 391-402, April
2003.
J. P. Richard, “Time-delay systems: An
overview of some recent advances and open
problems,” Automatica, vol. 39, no. 10, pp.
1667-1694, October 2003.
M. de la Sen, “Quadratic stability and
stabilization of switched dynamic systems with
uncommensurate internal point delays,” Applied
Mathematics and Computation, vol. 185, no.1,
pp. 508-526, February 2007.
F. Zheng and P. M. Frank, “Finite-dimensional
variable structure control design for distributed
delay systems,” International Journal of Control,
vol. 74, no. 4, pp. 398-408, March 2001.
Y. S. Lee, Y. S. Moon, W. H. Kwon, and P. G.
Park, “Delay-dependent robust H,, control for
uncertain  systems with a state-delay,”

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Automatica, vol. 40, no. 1, pp. 65-72, January
2004.

E. Fridman and U. Shaked, “H,-control of linear
state-delay  descriptor systems: An LMI
approach,” Linear Algebra and Its Applications,
vol. 351-352, no. 1, pp. 271-302, August 2002.
H. Logemann, “Destabilizing effects of small
time delays on feedback-controlled descriptor
systems,” Linear Algebra and Its Applications,
vol. 272, no. 1-3, pp. 131-153, March 1998.

S. Y. Xu, P. V. Dooren, R. Stefan, and J. Lam,
“Robust stability and stabilization for singular
systems with state delay and parameter
uncertainty,” /EEE Trans. on Automatic Control,
vol. 47, no. 7, pp. 1122-1128, July 2002.

J. H. Kim, “New design method on memoryless
H., controller for singular systems with delayed
stated and control using LMIL” Journal of the
Franklin Institute, vol. 342, no. 3, pp. 321-327,
May 2005.

E. K. Boukas and Z. K. Liu, “Delay-dependent
stability analysis of singular linear continuous-
time system,” /EE Proceedings-Control Theory
and Applications, vol. 150, no. 4, pp. 325-330,
July 2003.

J. H. Kim and D. C. Oh, “Robust and non-fragile
H,, control for descriptor systems with parameter
uncertainties and time delay,” International
Journal of Control, Automation, and Systems,
vol. 5, no. 1, pp. 8-14, February 2007.

J. H. Kim, “Robust H, control of uncertain
descriptor systems with time-varying delays,”
Transaction on Control, Automation, and
Systems Engineering, vol. 4, no. 3, pp. 199-204,
September 2002.

S. H. Chen and J. H. Chou, “Robust eigenvalue-
clustering in a specified circular region for linear
uncertain discrete singular systems with state
delay,” Applied Mathematics and Computation,
vol. 186, no. 2, pp. 1660-1670, March 2007.

Z. H. Jiang, W. H. Gui, and Y. F. Xie, “Delay-
dependent Stabilization of Singular Linear
Continuous-time Systems with Time-varying
State and Input Delays,” Proc. of the 6th IEEE
International Conference on Control and
Automation, pp. 1862-1867, 2007.

S. Q. Zhu, C. H. Zhang, and Z. L. Cheng,
“Delay-dependent robust stability criteria for
two classes of uncertain singular time-delay
systems,” [EEE Trans. on Automatic Control,
vol. 52, no. 5, pp. 880-885, May 2007.

Z. G. Wu and W. N. Zhou, “Delay-dependent
robust stabilization for uncertain singular
systems with state delay,” Acta Automatica
Sinica, vol. 33, no. 7, pp. 714-718, July 2007.

M. de la Sen, “On positivity of singular regular
linear time-delay time-invariant systems subject



Delay-dependent Stabilization of Singular Systems with Multiple Internal and External Incommensurate Constant... 525

[26]

[27]

[28]

[29]

[30]

[31]

[32]

to multiple internal and external incommensu-
ate point delays,” Applied Mathematics and
Computation, vol. 190, no. 1, pp. 382-401, July
2007.

Z. Wu and W. Zhou, “Delay-dependent robust
H., control for uncertain singular time-delay
systems,” IET Control Theory and Applications,
vol. 1, no. 5, pp. 1234-1241, September 2007.

I. Masubuchi, Y. Kamitane, A. Ohara, and N.
Suda, “H, control for descriptor systems: A
matrix inequalities approach,” Automatica, vol.
33, no. 3, pp. 669-676, April 1997.

X. D. Zhang, Matrix Analysis and Applications,
Tsinghua University Press, Beijing, 2004.

Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee,
“Delay-dependent  robust stabilization of
uncertain state-delayed systems,” International
Journal of Control, vol. 74, no. 14, pp. 1447-
1455, September 2001.

X. M. Zhang, M. Wu, J. H. She, and Y. He,
“Delay-dependent stabilization of linear systems
with time-varying state and input delays,”
Automatica, vol. 41, no.8, pp. 1405-1412,
August 2005.

S. Boyd, L. E. Ghaoui, E. Feron, and V.
Balakrishnan, Linear Matrix Inequalities in
Systems and Control Theory, STAM Study in
Applied Mathematics, SIAM, Philadelphia, 1994.
K. Gu, L. Kharitonov, and J. Chen, Stability of
Time-Delay Systems, Birkhauser, Boston, 2003.

diagnoses.

robust control.

Yong-Fang Xie received the Ph.D.
degree in Control Theory and Control
Engineering from Central South
University in
interests include decentralized control,
robust control, and process control.

1999. His research

Wei-Hua Gui received the Master
in Control Science and
Engineering from Central South
University in 1981. He is a Professor
and Ph.D. supervisor of Central South

degree

University. His

research interests

include modeling and optimal control
of  complex
distributed robust control, and fault

industrial  process,

Zhao-Hui Jiang received the Master
degree in Control Theory and Control
Engineering from Central South
University in 2006. He is a Ph.D.
candidate at the School of Information
and Engineering, Central
University. His  research
interests include singular systems, time

Science
South

delay

systems,

and decentralized



