• Title/Summary/Keyword: Stress Distribution Factor

Search Result 502, Processing Time 0.031 seconds

The Finite Element Analysis of the Mandrel Shape's Influence on the Residual Stress Distribution by Cold Expansion Method (형상봉의 모양이 홀확장 잔류응력 분포에 미치는 영향에 대한 유한요소해석)

  • Jang, Jae-Soon;Cho, Myoung-Rae;Yang, Won-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.127-133
    • /
    • 2006
  • Cold expansion method is used to protect a fatigue fracture from fastener hole in the structure and aerospace industry. Cold expansion is that an oversized tapered mandrel goes through the hole and produces a compressive residual stress as well as plastic deformation around the hole. Here, mandrel shapes are one of the factors which are influenced on the residual stress distribution by cold expansion method. This paper, according to mandrel shapes (diameter of mandrel, length of mandrel and length of taper), we are performed a finite element analysis of residual stress distribution by cold expansion method. From this study, it has been found that diameter of mandrel and length of taper are an important factor which was generated a low compressive residual stress surround of fastener hole by cold expansion method.

Measurement of Stress Intensity Factor of Orthotropic Material Using SPATE (SPATE에 의한 직교이방성체의 응력확대계수 측정)

  • Hwang, Jae-Seok;Suh, Jae-Guk;Lee, Hyo-Jae;Nam, Jeong-Hwan;Rpwlands, R.E.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3224-3233
    • /
    • 1996
  • SPATE(Stress Pattern Analysis by Thermal Emission) can be effectively used to analyze the stress distribution of the orthotropic structure under the repeated load by non-contact. In this research, the measuring conception and method of stress intensity factor of orthotropic material using SPATE are suggested. The relationships between the maximum values of SPATE signal and $1/\sqrt{X'}$ (or $1/\sqrt{y'}$) are theoretically established in the vicinity of crack tip of the orthotropic material. It is certified through SPATE experiment that their linear quality is very excellent.

A Study on the Effect of Stress Concentration Factor Determined by 3D-ESPI System on the Fatigue Life (3D-ESPI 시스템을 이용하여 결정된 응력집중계수가 피로수명에 미치는 영향에 관한 연구)

  • 김경수;심천식
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2002
  • Fatigue life estimation by the theoretical stress concentration factors are, in general, considerably different from test results. And in calculating stress concentration factor, it is very difficult to consider actual geometry and material property which are the notch shapes, imperfections or defects of materials such as porosities inclusions and casting defects, etc. Therefore, the paper deals with the experimental method to find out the more exact stress concentration factors by measuring the strain distributions on each specimen by 3D-ESPI(Electronic Speckle Pattern Interferometry) System. Then the fatigue lives are compared between theoretical calculations using stress concentration factors determined by 3D-ESPI system and fatigue test results.

A study on the calculation of stress intensity factor for a patched crack using approximate weight function (근사적 가중함수를 이용한 보강된 균열평판의 응력강도계수 계산에 대한 연구)

  • Kim, Jong-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.123-128
    • /
    • 2000
  • A cracked-plate with a patch bonded on one side is treated with a crack-bridging model: assuming continuous distribution of springs acting between crack surfaces. the approximate weight function was introduced to obtain the stress intensity factor of patched crack subjected to residual stress or non-uniform stress. The stress intensity factors for the partially patched crack within finite plate or the patched crack initiated from a notch were successfully obtained by numerical calculation.

  • PDF

Reliability of Machine Elements Based on Static and Dynamic Factor of Allowable Safety under Fluctuating Load (변동하중을 받는 기계요소의 정 .동적 허용안전계수를 고려한 신뢰성)

  • 양성모;김강희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.475-480
    • /
    • 1997
  • It is common to assum identical allowable safety factors in static strength, defined by mean stress and in fatigue, defined by stress amplitude. Under the load with asymmetrical cycles the safety factor is not the same. In this paper, with the consideration of unequal allowable safety factors a general method for estimating fatigue reliability of a machine element under a combined state of stress is derived based on the theory proposed by Prof. Kececioglu and normal distribution. The calculation of fatigue reliability for limited life is discussed with example.

  • PDF

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Su;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally condrcted by using S-N curves, as specified in the codeds and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02 ). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Sup;Nho, In-Sik
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves, as specified in the codes and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

  • PDF

A Study on the Fatigue Crack Growth Behavior in Welding Residual Stress Field(I) (용접잔류응력장에서의 피로균열 성장거동에 관한 연구(I))

  • 최용식;김영진;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.19-29
    • /
    • 1990
  • The objective of this paper is to investigate the effect of residual stresses on the $\Delta$K$\sub$th/ and fatigue crack growth behavior of butt weldments. For this purpose, transverse butt sutmerged arc welding was performed on SM50A steel plate and CT(compact tension) specimens which loading direction is perpendicular to weld bead were selected. Welding residual stresses distribution on the specimen was determined by hole drilling method. The case of crack located parallel to weld bead, the states of as weld and PWHT, $\Delta$K$\sub$th/ of specimens(HAZ, weld zone) was higher than that of the base metal probably because of the compressive residual stresses of crack tip. In low $\Delta$K region, it is estimated that the effects of residual stresses for da/dN are great. In region II, the da/dN of weldments in as weld state was lower than that of the base metal. Though da/dN of Weldments in PWHT state was similar to that of the base metal. The constant of power law, m in two states consisted with the base metal. Therefore , it is estimated that the value of m is not affected by residual stresses. Fatigue crack growth behavior of weldments consisted with the base metal considering the effective stress intensity factor range($\Delta$K$\sub$eff/) included the effect of initial residual stress(Kres). Thus, we can predict the fatigue crack growth behavior of weldment by knowing the distribution of initial residual stress at the crack tip.

  • PDF

Analysis of Material Removal Rate Profile and Stress Distribution According to Retainer Pressure (CMP에서 리테이너링의 압력에 따른 연마율 프로파일과 응력 분포 해석)

  • Lee, Hyun-Seop;Lee, Sang-Jik;Jeong, Suk-Hoon;An, Joon-Ho;Jeong, Hea-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.482-483
    • /
    • 2009
  • In chemical mechanical planarization (CMP) process, the uniformity of stress acting on wafer surface is a key factor for uniform material removal of thin film especially in the oxide CMP. In this paper, we analyze the stress on the contact region between wafer and pad with finite-element analysis (FEA). The setting pressure acting on wafer back side was $500g/cm^2$ and the retainer pressure was changed from 300 to $700g/cm^2$. The polishing test is also done with the same conditions. The material removal rate profiles well-matched with stress distribution.

  • PDF

Research on stress distributions around welds of three-planar tubular Y-joints under out-of-plane bending moment

  • Shiliu Bao;Wenhua Wang;Jikai Zhou;Xin Li
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.181-196
    • /
    • 2023
  • Marine structures including offshore wind turbines (OWTs) always work under cyclic loads, which arouses much attention on the fatigue design. The tripod substructure is one of the typical foundation forms for fixed OWTs. The three-planar tubular Y-joint (3Y joint) is one of the important components in fatigue design as it is most likely to have cracks. With the existence of the multiplanar interaction effect, calculating the hot spot stress (HSS) of 3Y joints is complicated. To assist with fatigue design, the distributions of stress concentration factor (SCF) and multiplanar interaction factor (MIF) along weld toe curves induced by the out-of-plane bending moment are explored in this study. An FE analysis method was first developed and verified against experimental results. This method was applied to build a numerical database including 1920 FE models covering common ranges of geometric parameters. A parametric study has been carried out to reveal the distribution patterns of SCF and MIF. After multidimensional nonlinear fittings, SCF and MIF distribution formulas have been proposed. Accuracy and reliability checking prove that the proposed formulas are suitable for calculating the HSS of 3Y joints.