• Title/Summary/Keyword: Strength-porosity prediction model

Search Result 13, Processing Time 0.023 seconds

A Model for the Relation between Strength and Porosity in Sintered Parts Produced by Powder Injection Molding Process (분말사출성형을 통해 제조된 소결체의 기공율에 따른 강도예측모델)

  • 성환진;하태권;안상호;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.375-378
    • /
    • 2003
  • In the present study, a new approach to predict the strength of sintered materials has been carried out and a new framework combining neck growth model and ideal pore model has been established based on the results of tensile tests on powder injection molded specimens with the various porosity. Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. PIM delivers structural materials in a shaping technology previously restricted to polymers. 17-4 PH stainless steel powders with average diameters of 10 $\mu\textrm{m}$ were injection-molded into flat tensile specimens sintered at the various temperatures ranging from 900 to 1350$^{\circ}C$ for 1h. The relationships between strength and porosity were applied to the experimental results and verified.

  • PDF

ESTIMATION OF CAKE FORMATION ON MICROFILTRATION MEMBRANE SURFACE USING ZETA POTENTIAL

  • Alayemieka, Erewari;Lee, Seock-Heon;Oh, Jeong-Ik
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.201-207
    • /
    • 2006
  • A simple empirical model with good quantitative prediction of inter-particle and intra-particle distance in a cake layer with respect to ionic strength was developed. The model is an inverse length scale with functions of interaction energy and hydrodynamic factor and it explains that the inter-particle and intra-particle distance in a cake is directly related to the effective size of particles. Particle compressibility with respect to ionic strength was also predicted by the model. The model corroborated very well with experimental results of polystyrene microsphere latex particles microfiltation in a dead end operation. From the results of the model, specific cake resistance could be controlled by the same variables affecting the height of particle energy barrier described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.

Modeling on Compressive Strength in High Performance Concrete Using Porosity (공극률을 이용한 고성능 콘크리트의 압축강도 특성 모델링)

  • Lee, Hack Soo;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.124-133
    • /
    • 2012
  • Compressive strength in concrete increases with time. Regression analysis with time is conventionally performed for strength evaluation and prediction. In this study, hydrate amount is assumed as a function of hydration rate and porosity, and modeling on compressive strength is carried out considering decreasing porosity with time, which does not need the regression analysis with time. For twenty one mix proportions of HPC (High Performance Concrete), DUCOM (FE program) which can simulate the behavior in early aged concrete is utilized, and porosity from each mix proportions is obtained with time. For HPC with OPC (Ordinary Portland Cement) concrete, modeling on compressive strength is performed considering hydration rate, unit content of cement, and porosity with time. For HPC with mineral admixtures, a long-term parameter which can handle long-term strength development is additionally considered. From the comparison with the previous test results, the applicability of the proposed model is verified.

Prediction of the Dependence of Phase Velocity on Porosity in Cancellous Bone

  • Lee, Kang-Il;Choi, Min-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2E
    • /
    • pp.45-50
    • /
    • 2008
  • In recent years, quantitative ultrasound (QUS) technologies have played a growing role in the diagnosis of osteoporosis. Most of the commercial bone somometers measure speed of sound (SOS) and/or broadband ultrasonic attenuation (EUA) at peripheral skeletal sites. However, the QUS parameters are purely empirical measures that have not yet been firmly linked to physical parameters such as bone strength or porosity. In the present study, the theoretical models for wave propagation in cancellous bone, such as the Biot model, the stratified model, and the modified Biot-Attenborough (MBA) model, were applied to predict the dependence of phase velocity on porosity in cancellous bone. The optimum values for the input parameters of the three models in cancellous bone were determined by comparing the predictions with the previously published measurements in human cancellous bone in vitro. This modeling effort is relevant to the use of QUS in the diagnosis of osteoporosis because SOS is negatively correlated to the fracture risk of bone, and also advances our understanding of the relationship between phase velocity and porosity in cancellous bone.

Mechanical Properties of Hydrated Cement Paste: Development of Structure-property Relationships

  • Ghebrab, Tewodros T.;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.

Simulation of Hydration of Portland Cement Blended With Mineral Admixtures

  • Wang, Xiaoyong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.565-566
    • /
    • 2009
  • Supplementary cementing materials (SCM), such as silica fume, slag, and low-calcium fly ash, have been widely used as mineral admixtures in high strength and high performance concrete. Due to the chemical and physical effect of SCM on hydration, compared with Portland cement, hydration process of cement incorporating SCM is much more complex. This paper presents a numerical hydration model which is based on multi-component concept and can simulate hydration of cement incorporating SCM. The proposed model starts with mixture proportion of concrete and considers both chemical and physical effect of SCM on hydration. Using this proposed model, this paper predicts the following properties of hydrating cement-SCM blends as a function of hydration time: reaction ratio of SCM, calcium hydroxide content, heat evolution, porosity, chemically bound water and the development of the compressive strength of concrete. The prediction results agree well with experiment results.

  • PDF

Prediction of the mechanical properties of granites under tension using DM techniques

  • Martins, Francisco F.;Vasconcelos, Graca;Miranda, Tiago
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.631-643
    • /
    • 2018
  • The estimation of the strength and other mechanical parameters characterizing the tensile behavior of granites can play an important role in civil engineering tasks such as design, construction, rehabilitation and repair of existing structures. The purpose of this paper is to apply data mining techniques, such as multiple regression (MR), artificial neural networks (ANN) and support vector machines (SVM) to estimate the mechanical properties of granites. In a first phase, the mechanical parameters defining the complete tensile behavior are estimated based on the tensile strength. In a second phase, the estimation of the mechanical properties is carried out from different combination of the physical properties (ultrasonic pulse velocity, porosity and density). It was observed that the estimation of the mechanical properties can be optimized by combining different physical properties. Besides, it was seen that artificial neural networks and support vector machines performed better than multiple regression model.

The simulation of hydration of Portland cement blended with chemical inert filler

  • Xiaoyong, Wang;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1041-1044
    • /
    • 2008
  • The addition of chemical inert filler in blended cement, such as limestone or chemical inert silica fume, will produce a physical effect on cement hydration. Due to the high surface area of inert filler in the mixtures, it provides sites for the nucleation and growth of hydration products, thus improving the hydration rate of cement compounds and consequently increasing the strength at early age. This paper proposes a model of hydration of Portland cement blended with chemical inert filler. This model considers the influence of water to cement ratio, cement particle size, cement composition and addition of chemical inert filler on hydration. The heat evolution, degree of hydration and porosity are obtained as accompanied results in hydration process. The prediction results agree well with experiment results.

  • PDF

Experimental Study on the Change of Rock Properties due to Water Saturation (포화에 의한 암석물성 변화에 대한 실험적 연구)

  • Choi, Seung-Beom;Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.476-492
    • /
    • 2018
  • In this study, various laboratory experiments were conducted on tuff, basalt and diorite specimens, which were obtained in the southern part of Korean Peninsula. Experiments were performed under dry and water saturated conditions. Results showed that strength degradation and change of deformation characteristics were remarkable although the specimens had small porosity. Based on the results, regression models that are capable of predicting important mechanical rock properties, such as uniaxial compressive strength, Young's modulus, Brazilian tensile strength were proposed. P-wave velocity and Shore hardness were selected as independent variables and the results showed satisfactory prediction performance for the experimental data collected in this study.

Scale Effects of Initial Model and Material on 3-Dimensional Distinct Element Simulation (3차원 개별요소해석 시의 초기 모델 및 재료 스케일 영향)

  • Jeon, Jesung;Shin, Donghoon;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.57-65
    • /
    • 2011
  • Numerical simulations by three-dimensional Particle Flow Code($PFC^{3D}$, Itasca) considering distinct element method (DEM) were carried out for prediction of triaxial compression test with sand material. The effect of scale conditions for numerical model and distinct material on final prediction results was analyzed by numerical models under various scale conditions, and following observations were made from the numerical experiments. It is very useful to model the initial material condition without any porosity conversion from 2-D to 3-D DEM. Numerical experiments have shown that in all cases considered, 3D distinct element modeling could provide good agreement on stress-strain behavior, volume change and strength properties with laboratory testing results. It was important thing to assess reasonable scale ratio of numerical model and distinct elements for saving calculation time and securing calculation efficiency under condition with accuracy and appropriateness as numerical laboratory. As results of DEM simulations under various scale conditions, most of results show that shear strength properties as cohesion and internal friction angle are similar in condition of $D_{mod}/D_{gmax}$ < 10. It shows that 3-D distinct element method could be used as efficient tool to assess strength properties by numerical laboratory technique.