DOI QR코드

DOI QR Code

Modeling on Compressive Strength in High Performance Concrete Using Porosity

공극률을 이용한 고성능 콘크리트의 압축강도 특성 모델링

  • 이학수 (한남대학교 건설시스템 공학과) ;
  • 권성준 (한남대학교 건설시스템 공학과)
  • Received : 2012.07.17
  • Accepted : 2012.09.21
  • Published : 2012.11.30

Abstract

Compressive strength in concrete increases with time. Regression analysis with time is conventionally performed for strength evaluation and prediction. In this study, hydrate amount is assumed as a function of hydration rate and porosity, and modeling on compressive strength is carried out considering decreasing porosity with time, which does not need the regression analysis with time. For twenty one mix proportions of HPC (High Performance Concrete), DUCOM (FE program) which can simulate the behavior in early aged concrete is utilized, and porosity from each mix proportions is obtained with time. For HPC with OPC (Ordinary Portland Cement) concrete, modeling on compressive strength is performed considering hydration rate, unit content of cement, and porosity with time. For HPC with mineral admixtures, a long-term parameter which can handle long-term strength development is additionally considered. From the comparison with the previous test results, the applicability of the proposed model is verified.

콘크리트의 강도는 시간에 따라 증가하며, 많은 연구에서 시간에 대한 회귀 분석식을 사용하고 있다. 본 연구는 수화물량을 수화도 및 공극률의 함수로 가정하였으며, 재령의 증가에 따라 감소하는 공극률을 이용하여 고성능 콘크리트의 압축강도 모델링을 수행하였다. 본 연구에서는 기존의 시간에 대한 회귀분석없이 공극률의 감소만을 이용하여 압축강도를 예측하였다. 총 21개의 고성능 콘크리트 배합에 대해 초기재령 콘크리트의 거동 해석프로그램인 DUCOM을 이용하여 각각의 공극률을 도출하였으며, 강도 모델링을 수행하였다. OPC 콘크리트에 대해서 수화도, 단위시멘트량, 공극률의 함수로 강도 예측식을 제안하였으며, GGBFS 및 FA를 혼입한 콘크리트에 대해서는 장기강도 영향을 구현하기 위해 공극률을 고려한 장기강도변수를 도입하였다. 기존의 실험결과와의 비교를 통하여 제안된 강도예측식의 타당성을 입증하였다.

Keywords

References

  1. Al-Amoudi, O. S. B., Al-Kutti, W. A., Ahmad, S., Maslehuddin, M., "Correlation between Compressive Strength and Certain Durability Indices of Plain and Blended Cement Concretes", Cement and Concrete Composites, vol. 31, 2009, pp.672-676. https://doi.org/10.1016/j.cemconcomp.2009.05.005
  2. CEB-FIP, Model Code Comite' Euro-International du beton, 1990, pp.65-82.
  3. Ishida, T., Chaube, R., P., Maekawa, K., "Modeling of Pore Content in Concrete under Generic Drying Wetting Conditions", Concrete Library of JSCE, vol. 18, No. 1, 1996, pp.113-118.
  4. Ishida, T., Maekawa, K., Kishi, T., "Enhanced Modeling of Moisture Equilibrium and Transport in Cementitious Materials under Arbitrary Temperature and Relative Humidity History", Cement and Concrete Research, vol. 37, 2007, pp.565-578. https://doi.org/10.1016/j.cemconres.2006.11.015
  5. Ishida, T., Maekawa, K., "Modeling of Durability Performance of Cementitious Materials and Structures based on Thermo-Hygro Physics", RILEM PRO 29, Life Prediction and Aging Management of Concrete Structures, 2003, pp.39-49.
  6. Kato, Y., Kishi, T., "Strength Development Model for Concrete in Early Ages Based on Hydration of Constituent Minerals", Proceeding of JCI, vol. 16, No. 1, 1994, pp.503-508.
  7. Kim, D.-K., Lee, J,-J., Chang, S.-K., "Probabilistic Neural Network for Prediction of Compressive Strength of Concrete", Journal of Korea Institute for Structural Maintenance Inspection, vol. 87, No. 2, 2004, pp.159-167.
  8. Lee, C.-S., Yoon, I.-S., "An Experimental Study on the Durability Performance for Ternary Blended Concrete Containing Both Fly Ash and Granulated Blast Furnace Slag", Journal of Korea Institute for Structural Maintenance Inspection, vol. 7, No. 1, 2003, pp.139-145.
  9. Lee, K.-M., Kwon, K. H., Lee, H.-K., Lee, S.-H., Kim, G.-Y., "Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag", Journal of Korea Concrete Institute, vol. 16, No. 5, 2004, pp.621-626. https://doi.org/10.4334/JKCI.2004.16.5.621
  10. Lee, S.-S., Song, H.-Y., Lee, S.-M., "An Experimental Study on the Influence of High Fineness Fly Ash and Water-Binder Ratio on Properties of Concrete", Journal of Korea Concrete Institute, vol. 21, No. 1, 2009, pp.29-35. https://doi.org/10.4334/JKCI.2009.21.1.029
  11. Lim, S.-H., Kang, H.-S., "Estimating Compressive Strength of high Strength Concrete by Ultrasonic Pulse Velocity Method", Journal of Korea Institute for Structural Maintenance Inspection, vol. 5, No. 3, 2001, pp.123-130.
  12. Maekawa, K., Chaube, R. and Kishi, T., Modeling of Concrete Performance: Hydration, Microstructure Formation and Mass Transport, Routledge, London and New York. 1999. pp.31-58.
  13. Maekawa, K., Ishida, T., Kishi, T., "Multi-Scale Modeling of Concrete Performance", Journal of Advanced Concrete Technology, vol. 1, 2003, pp.91-126. https://doi.org/10.3151/jact.1.91
  14. Maekawa, K., Ishida, T., Kishi, T., Multi-Scale Modeling of Structural Concrete, Taylor&Francis, 2009, pp.86-105.
  15. Neville, A. M., Properties of Concrete, 4th Ed. Longman (revised), 1996, pp.56-93.
  16. Park, S.-S., Kwon, S.-J., Kim, T. S., "An Experimental Study on the Durability Characterization Using Porosity", Journal of Korean Society of Civil Engineering, vol. 29, No. 2-A, 2009, pp.171-179.
  17. Park, S.-S., Kwon, S.-J., Song, H.-W., "Analysis Technique for Restrained Shrinkage of Concrete Containing Chlorides", Materials and Structures, vol. 44, 2011, pp.475-486. https://doi.org/10.1617/s11527-010-9642-4
  18. Ryshkewitch, E., "Composition and Strength of Porous Sintered Alumina and Zirconia", Journal of American Ceremic Society, vol. 36, 1953, pp.65-68. https://doi.org/10.1111/j.1151-2916.1953.tb12837.x
  19. Sam Sung Construction, Evaluation of Chloride Ion Diffusion Coefficient for High Performance Concrete, Technical Report, 2003, pp.27-33.
  20. Schiller, K. K., Mechanical Properties of Non-Metallic Materials, Butterworth, London, 1958, pp.35-50.
  21. Song, H.-W., Cho, H.-J., Park, S.-S., Byun, K. J., Maekawa, K., "Early-Age Cracking Resistance Evaluation of Concrete Structure", Concrete Science and Engineering, vol. 3, 2001, pp.62-72.
  22. Song, H.-W., Kwon, S.-J., Byun, K. J., Park, C. K., "A Study on Analytical Technique of Chloride Diffusion Considering Characteristics of Mixture Design for High Performance Concrete Using Mineral Admixture", Journal of Korean Society of Civil Engineering, vol. 25, No. 1-A, 2005, pp.213-223.
  23. Stegemann, J. A., Buenfeld, N. R., "Prediction of Unconfined Compressive Strength of Cement Paste with Pure Metal Compound Additions", Cement and Concrete Research, vol. 32, 2002, pp.903-913. https://doi.org/10.1016/S0008-8846(02)00722-6

Cited by

  1. Petrochemical Plant Safety Management System based on Wireless Transmitter vol.19, pp.6, 2015, https://doi.org/10.11112/jksmi.2015.19.6.088
  2. Experimental Study on Evaluation of Material Properties in Cement Mortar with Pond Ash vol.17, pp.3, 2013, https://doi.org/10.11112/jksmi.2013.17.3.108
  3. Analytical Estimation of the Performance of Marine Concrete with Mineral Admixture vol.3, pp.4, 2015, https://doi.org/10.14190/JRCR.2015.3.4.301
  4. 공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링 vol.15, pp.3, 2015, https://doi.org/10.5392/jkca.2015.15.03.415
  5. 심층 컨볼루션 신경망을 활용한 영상 기반 콘크리트 압축강도 예측 모델 vol.19, pp.4, 2012, https://doi.org/10.6106/kjcem.2018.19.4.043