• Title/Summary/Keyword: Stokes equation

Search Result 861, Processing Time 0.033 seconds

Study of the semi-segregation algorithms of the incompressible Navier-Stokes equations using P2P1 finite element formulation (P2P1 유한요소 공식을 이용한 비압축성 Navier-Stokes 방정식의 반-분리 해법에 관한 연구)

  • Cho, Myung-H.;Choi, Hyoung-G.;Yoo, Jung-Y.;Park, Jae-I.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.349-352
    • /
    • 2006
  • The conventional segregated finite element formulation produces a small and simple matrix at each step than in an integrated formulation. And the memory and cost requirements of computations are significantly reduced because the pressure equation for the mass conservation of the Navier-Stokes equations is constructed only once if the mesh is fixed. However, segregated finite element formulation solves Poisson equation of elliptic type so that it always needs a pressure boundary condition along a boundary even when physical information on pressure is not provided. On the other hand, the conventional integrated finite element formulation in which the governing equations are simultaneously treated has an advantage over a segregated formulation in the sense that it can give a more robust convergence behavior because all variables are implicitly combined. Further it needs a very small number of iterations to achieve convergence. However, the saddle-paint-type matrix (SPTM) in the integrated formulation is assembled and preconditioned every time step, so that it needs a large memory and computing time. Therefore, we newly proposed the P2PI semi-segregation formulation. In order to utilize the fact that the pressure equation is assembled and preconditioned only once in the segregated finite element formulation, a fixed symmetric SPTM has been obtained for the continuity constraint of the present semi-segregation finite element formulation. The momentum equation in the semi-segregation finite element formulation will be separated from the continuity equation so that the saddle-point-type matrix is assembled and preconditioned only once during the whole computation as long as the mesh does not change. For a comparison of the CPU time, accuracy and condition number between the two methods, they have been applied to the well-known benchmark problem. It is shown that the newly proposed semi-segregation finite element formulation performs better than the conventional integrated finite element formulation in terms of the computation time.

  • PDF

Critical Reynolds Number for the Occurrence of Nonlinear Flow in a Rough-walled Rock Fracture (암반단열에서 비선형유동이 발생하는 임계 레이놀즈수)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Fluid flow through rock fractures has been quantified using equations such as Stokes equations, Reynolds equation (or local cubic law), cubic law, etc. derived from the Navier-Stokes equations under the assumption that linear flow prevails. Therefore, these simplified equations are limited to linear flow regime, and cause errors in nonlinear flow regime. In this study, causal mechanism of nonlinear flow and critical Reynolds number were presented by carrying out fluid flow modeling with both the Navier-Stokes equations and the Stokes equations for a three-dimensional rough-walled rock fracture. This study showed that flow regimes changed from linear to nonlinear at the Reynolds number greater than 10. This is because the inertial forces, proportional to the square of the fluid velocity, increased enough to overwhelm the viscous forces. This tendency was also shown for the unmated (slightly sheared) rock fracture. It was found that nonlinear flow was caused by the rapid increase in the inertial forces with increasing fluid velocity, not by the growing eddies that have been ascribed to nonlinear flow.

Convergence and Stability Analysis of LU Scheme on Unstructured Meshes: Part II - Navier-Stokes Equations (비정렬 격자계에서 LU implicit scheme의 수렴성 및 안정성 해석: Part II - Navier-Stokes 방정식)

  • Kim, Joo-Sung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.1-11
    • /
    • 2004
  • A comprehensive study has been made for the investigation of the convergence and stability characteristics of the LU scheme for solving the Navier-Stokes equations on unstructured meshes. For this purpose the characteristics of the LU scheme was initially studied for a scalar model equation. Then the analysis was extended to the Navier-Stokes equations. It was shown that the LU scheme has an inherent stiffness in the streamwise direction. This stiffness increases when the grid aspect ratio becomes high and the cell Reynolds number becomes small. It was also shown that the stiffness related to the grid aspect ratio can be effectively eliminated by performing proper subiteration. The results were validated for a flat-plate turbulent flow.

Optimal Shape Design of a 2-D Curved Duct Using a Mathematical Theory (수학적 이론을 이용한 이차원 곡면 덕트의 최적형상 설계)

  • Lim, Seokhyun;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1325-1334
    • /
    • 1998
  • The objectives of the present study are to develop a systematic method rather than a conventional trial-and-error method for an optimal shape design using a mathematical theory, and to apply it to engineering problems. In the present study, an optimal condition for a minimum pressure loss in a two-dimensional curved duct flow is derived and then an optimal shape of the curved duct is designed from the optimal condition. In the design procedure, one needs to solve the adjoint Navier-Stokes equations which are derived from the Navier-Stokes equations and the cost function. Therefore, a computer code of solving both the Navier-Stokes and adjoint Navier-Stokes equations together with an automatic grid generation is developed. In a curved duct flow, flow separation occurs due to an adverse pressure gradient, resulting in an additional pressure loss. Optimal shapes of a curved duct are obtained at three different Reynolds numbers of 100, 300 and 800, respectively. In the optimally shaped curved ducts, the separation region does not exist or is significantly reduced, and thus the pressure loss along the curved duct is significantly reduced.

MQUICK Upwind Scheme for the Incompressible Navier-Stokes Equations (비압축성 Navier-Stokes 방정식의 해석을 위한 MQUICK 상류해법)

  • Shin B. R.;Ikohagi T.
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.41-52
    • /
    • 1999
  • 이 논문에서는, QUICK해법의 불안정성을 개량하므로써, 수치계산에 있어서 수렴이 빠르고, 수치적으로 안정한 계산을 할 수 있는 새로운 MQUICK 상류해법을 제안하고, 이를 비압축성 층류유동의 계산에 적용하였다. 또한, 해법의 정확성, 안정성, 수렴속도에 대한 검토를 통하여 본 MQUICK 상류해법의 유효성과 타당성이 평가되었다. 이 해법에서는 인공산일의 가감을 조절하기 위하여 가중계수 α를 써서 정식화 하였고, 위의 검토를 통하여 α의 최적값을 조사하였다. 이 해법을 SMAC 음해법에 적용하여 2 차원 공동유동, 3 차원 덕트유동과 같은 몇몇 표준문제를 계산하고, 계산된 결과를 실험값 또는, 3 차 정확도의 상류해법 및 QUICK해법에 의한 결과 들과 비교 하므로써, 본 MQUICK 상류해법이 위의 다른 해법에 비하여 안정하고, 유효성이 높은 해법임을 확인 하였다.

  • PDF

Numerical Simulation of Turbine Cascade Flowfields Using Two Dimensional Compressible Navier-Stokes Equations (2차원 압축성 Navier-Stokes 방정식에 의한 터빈 익렬유동장의 수치 시뮬레이션)

  • Chung, H.T.;Kim, J.S.;Sin, P.Y.;Choi, B.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.16-21
    • /
    • 1999
  • Numerical simulation on two-dimensional turbine cascade flow has been performed using compressible Navier-Stokes equations. The flow equations are written in a cartesian coordinate system, then mapped into a generalized body-fitted ones. All direction of viscous terms are incoporated and turbulent effects are modeled using the extended ${\kappa}-{\epsilon}$ model. Equations are discretized using control volume SIMPLE algorithm on the nonstaggered grid sysetem. Applications are made at a VKI turbine cascade flow in atransonic wind-tunnel and compared to experimental data. Present numerical results are shown to be in good agreement with the experimental results and simulate the compressible viscous flow characteristics inside the turbine blade passage.

  • PDF

ERROR ESTIMATES FOR THE FULLY DISCRETE STABILIZED GAUGE-UZAWA METHOD -PART I: THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.125-150
    • /
    • 2013
  • The stabilized Gauge-Uzawa method (SGUM), which is a second order projection type algorithm to solve the time-dependent Navier-Stokes equations, has been newly constructed in 2013 Pyo's paper. The accuracy of SGUM has been proved only for time discrete scheme in the same paper, but it is crucial to study for fully discrete scheme, because the numerical errors depend on discretizations for both space and time, and because discrete spaces between velocity and pressure can not be chosen arbitrary. In this paper, we find out properties of the fully discrete SGUM and estimate its errors and stability to solve the evolution Navier-Stokes equations. The main difficulty in this estimation arises from losing some cancellation laws due to failing divergence free condition of the discrete velocity function. This result will be extended to Boussinesq equations in the continuous research (part II) and is essential in the study of part II.

Design Optimization of Transonic Airfoils Based on the Navier-Stokes Equation (Navier-Stokes 방정식을 이용한 천음속 익형의 설계최적화 연구)

  • Lee Hyeong Min;Jo Chang Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.177-185
    • /
    • 1999
  • The airfoil design optimization procedures based on the Navier-Stokes equations were developed, This procedure enables more realistic and practical transonic airfoil designs. The modified Hicks-Henne functions were used to generate the shape of airfoils. Five Hick-Henne functions were used to design upper surface of airfoil only. To enhance the ability of Hick-Henne function to generate various airfoil shape with limited number of functions, the positions of control points were adjusted through optimization procedure. The design procedure was applied to the single-point design for the drag minimization problem with lift and area constraints. The result shows the capability of the procedure to generate much realistic airfoils with very small drag-creep in the low transonic regime. This is mainly due to the viscosity effect of Navier-Stokes flow analysis. However, in the higher transonic range tile drag-creep appears. The multi-point design is shown to be an effective way to avoid the drag-creep and improve off-design performance which is very similar in the Euler design.

  • PDF

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.