DOI QR코드

DOI QR Code

Critical Reynolds Number for the Occurrence of Nonlinear Flow in a Rough-walled Rock Fracture

암반단열에서 비선형유동이 발생하는 임계 레이놀즈수

  • Kim, Dahye (Department of Geological and Environmental Sciences, Chonnam National University) ;
  • Yeo, In Wook (Department of Geological and Environmental Sciences, Chonnam National University)
  • 김다혜 (전남대학교 지구환경과학부) ;
  • 여인욱 (전남대학교 지구환경과학부)
  • Received : 2019.07.29
  • Accepted : 2019.08.27
  • Published : 2019.08.28

Abstract

Fluid flow through rock fractures has been quantified using equations such as Stokes equations, Reynolds equation (or local cubic law), cubic law, etc. derived from the Navier-Stokes equations under the assumption that linear flow prevails. Therefore, these simplified equations are limited to linear flow regime, and cause errors in nonlinear flow regime. In this study, causal mechanism of nonlinear flow and critical Reynolds number were presented by carrying out fluid flow modeling with both the Navier-Stokes equations and the Stokes equations for a three-dimensional rough-walled rock fracture. This study showed that flow regimes changed from linear to nonlinear at the Reynolds number greater than 10. This is because the inertial forces, proportional to the square of the fluid velocity, increased enough to overwhelm the viscous forces. This tendency was also shown for the unmated (slightly sheared) rock fracture. It was found that nonlinear flow was caused by the rapid increase in the inertial forces with increasing fluid velocity, not by the growing eddies that have been ascribed to nonlinear flow.

단열을 통한 유체의 유동은 선형유동이 우세하다는 가정아래 Navier-Stokes 방정식에서 유도된 Stokes 방정식, Reynolds 식(또는 local cubic law), cubic law 와 같은 방정식을 이용하여 해석되고 있다. 하지만 이러한 방정식은 선형 흐름에 국한되며, 비선형 유동영역에 적용하게 되면 오류가 발생한다. 본 연구에서는 레이저 계측기를 이용하여 정밀하게 측정한 3차원 단열 자료와 Navier-Stokes 방정식과 Stokes 방정식을 지배방정식으로 한 수치모델링을 수행함으로써 비선형 유동이 일어나는 현상과 임계 레이놀즈수를 제시하였다. 레이놀즈수가 10이상이 되면 유속의 제곱에 비례하는 관성력이 점성력을 충분히 압도할 정도로 커지면서 지하수 유동이 선형영역에서 비선형 유동영역으로 전환되는 것으로 분석되었다. 이는 평균 간극과 거친 정도가 다른 두 단열에서 모두 동일하게 나타났다. 비선형 유동의 발생기작은 소용돌이 구조의 발생과 성장에 의한 것으로 알려져 있지만, 본 연구결과 단순히 소용돌이 구조가 비선형 유동을 일으키는 아니라 유속이 증가하면서 관성력의 영향이 훨씬 큰 영향을 끼치게 되어 비선형 유동이 발생하는 것으로 나타났다.

Keywords

References

  1. Borgne, T., Bour, O., Paillet, F.L. and Caudal, J.P. (2006) Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer, Journal of Hydrology, v.328, p.347-359. https://doi.org/10.1016/j.jhydrol.2005.12.029
  2. Brush, D.J. and Thomson, N.R. (2003) Fluid flow in synthetic rough-walled fractures: Navier-Stokes, Stokes, and local cubic law simulations, Water Resources Research, v.39, n.4, 1085.
  3. Chaudhary M.B., Slottke, D.T., Ketcham, R.A. and Sharp, J.M. Jr. (2007) Navier-Stokes flow and transport simulations using real fractures shows heavy tailing due to eddies, Geophysical Research Letters, v.34, L14404. https://doi.org/10.1029/2007GL030545
  4. Chen, Y.F., Hu, S.H., Hu, R. and Zhou, C.B. (2015) Estimating hydraulic conductivity of fractured rocks from high-pressure packer tests with an Izbash's law-based empirical model, Water Resources Research, v.51, p.2096-2118. https://doi.org/10.1002/2014WR016458
  5. Chen, Z., Qian, J.Z., Luo, S.H. and Zhan, H.B. (2009) Experimental study of friction factor for groundwater flow in a single rough fracture. Journal of Hydrodynamics, v.21, n.6, p.820-825. https://doi.org/10.1016/S1001-6058(08)60218-8
  6. COMSOL (2018) https://www.comsol.com/release/5.4
  7. Freeze, R.A., Cherry, J.A. (1979) Groundwater, Prentice, New Jersey. 604p.
  8. Ji, S.H., Lee, H.B., Yeo, I.W. and Lee, K.K. (2008) Effect of nonlinear flow on DNAPL migration in a rough-walled fracture, Water Resources Research, v.44, n.11, W11431. https://doi.org/10.1029/2007WR006712
  9. Konzuk, J.S. and Kueper B.H. (2004) Evaluation of cubic law based models describing single-phase flow through a rough-walled fracture, Water Resources Research, v.40 n.2, W02402. https://doi.org/10.1029/2003WR002356
  10. Lee, H.B., Yeo, I.W., Ji, S.H. and Lee, K.K. (2010) Wettability-dependent DNAPL migration in a rough-walled fracture, Journal of Contaminant Hydrology, v.113, p.44-55. https://doi.org/10.1016/j.jconhyd.2009.12.006
  11. Myers, T. (2012) Potential contaminant pathways from hydraulically fractured shale to aquifers, Groundwater, v.50, n.6, p.872-882. https://doi.org/10.1111/j.1745-6584.2012.00933.x
  12. Oh, J.H., Kim, K.Y., Kim, T. and Kim, H.C. (2010) A review of laboratory expreminets for $CO_2$ geological storage, Economic and Environmental Geology, v.43, n.3, p.291-304.
  13. Oron, A.P. and Berkowitz, B. (1998) Flow in rock fractures: The local cubic law assumption reexamined, Water Resources Research, v.34, n.11, p.2811-2825. https://doi.org/10.1029/98WR02285
  14. Park, K.W., Ko, N.Y. and Ji, S.H. (2018) Construction of hydrogeological model for KURT site based on geological model, Economic and Environmental Geology, v.51, n.2, p.121-130. https://doi.org/10.9719/EEG.2018.51.2.121
  15. Zimmerman, R.W., Al-Yaarubi, A., Pain, C.C. and Grattoni, C.A. (2004) Non-linear regimes of fluid flow in rock fractures, International Journal of Rock Mechanics and Mining Sciences, v.41 n.3, p.163-169. https://doi.org/10.1016/j.ijrmms.2004.03.036
  16. Zimmerman, R.W. and Bodvarsson, G.S. (1996) Hydraulic conductivity of rock fractures, Transport in Porous Media, v.23, n.1, p.1-30. https://doi.org/10.1007/BF00145263
  17. Zimmerman, R.W. and Yeo, I.W. (2000) Fluid flow in rock fractures: From the Navier-Stokes equations to the cubic law, Dynamics of Fluids in Fractured Rock, v.122, p.213-224. https://doi.org/10.1029/GM122p0213
  18. Zhang, Z. and Nemcik, J. (2013) Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures, Journal of Hydrology, v.477 n.16, p.139-151. https://doi.org/10.1016/j.jhydrol.2012.11.024
  19. Zou, L,L., Jing, L., and Cvetkovic, V. (2015) Roughness decomposition and nonlinear fluid flow in a single rock fracture. International Journal of Rock Mechanics and Mining Sciences, v.75, p.102-118. https://doi.org/10.1016/j.ijrmms.2015.01.016