Abstract
A comprehensive study has been made for the investigation of the convergence and stability characteristics of the LU scheme for solving the Navier-Stokes equations on unstructured meshes. For this purpose the characteristics of the LU scheme was initially studied for a scalar model equation. Then the analysis was extended to the Navier-Stokes equations. It was shown that the LU scheme has an inherent stiffness in the streamwise direction. This stiffness increases when the grid aspect ratio becomes high and the cell Reynolds number becomes small. It was also shown that the stiffness related to the grid aspect ratio can be effectively eliminated by performing proper subiteration. The results were validated for a flat-plate turbulent flow.
본 연구에서는 비정렬 격자계에서 가장 많이 쓰이는 근사 해법 중에 하나인 LU 기법의 Navier-Stokse 방정식에 대한 수렴성 및 안정성에 관한 연구를 수행하였다. 적절한 스칼라 모델 방정식을 사용하여 LU 기법이 갖는 고유한 특성에 관한 해석적 논의를 수행하였으며, 이를 Navier-Stokes 방정식으로 확장하여 해석하였다. 그 결과 LU 기법의 강성도는 격자 종횡비가 높아짐에 띠라, 그리고 격자 레이놀즈 수 감소함에 따라 증가하게 된다. 또한 내부반복계산을 통해서 이러한 강성도가 부분적으로 극복될 수 있음을 보였으며, 평판 난류 유동 해석을 통해서 해석 결과를 검증하였다.