• Title/Summary/Keyword: Stokes equation

Search Result 861, Processing Time 0.025 seconds

Application of Navier-Stokes Equations to the Aerodynamic Design of Axial-Flow Turbine Blades (축류터빈 블레이드의 공력학적 설계를 위한 Navier-Stokes방정식의 적용)

  • Chung H.T;Chung K.S;Park J.Y;Baek J.H;Chang B.I;Cho S.Y
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2003
  • The design method for transonic turbine blades has been developed based on Wavier-Stokes equations. The present computing process is done on the four separate steps, i.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. In the present study, numerical simulation has been done to investigate the effects of the design parameters on the aerodynamic peformance of the axial-flow turbine blades. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to four parameters and compared with the experimental data.

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis (삼차원 Navier-Stokes 해석을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2157-2161
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k-e turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time

  • PDF

Numerical Analysis of Ocean Wave by Multi-Grid Method (복합격자 방법에 의한 해양파의 수치해석)

  • 곽승현
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.175-182
    • /
    • 1999
  • The ocean wave is hydrodynamically investigated to get more reliable solution. To improve the computational accuracy more fine grids are used with relatively less computer storage on the free surface. One element of the free surface is discretized into more fine grids because the free-surface waves are much affected by the grid size in the finite difference scheme. Here the multi-grid method is applied to confirm the efficiency for the S103 ship model by solving the Navier-Stokes equation for the turbulent flows. According to the computational result approximately 30% can be improved in the free surface generation, Finally the limiting streamlines show numerical result is similar to the experiment by twin tuft.

  • PDF

Computational Study on the Characteristics of Nonlinear Wave Caused by Breaking Waves of Two-Dimensional Regular Periodic Wave (2차원 진행규칙파열에서의 쇄파현상에 따른 비선형성 파의 특성에 관한 수치적 연구)

  • 박종천;관전수명
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.50-61
    • /
    • 1996
  • The breaking phenomenon of regular periodic waves generated by a numerical wave maker is simulated by finite-difference method which can cope with strong interface motions. The air and water flows are simultaneously solved in the time-marching solution procedure for the Navier-Stokes equation. A density-function technique is devised for the implemenation of the interface conditions. The accuracy is examined and applied to the simulation of two-dimensional breaking phenomena of periodic gravity waves.

  • PDF

3-D Incompressible Viscous Flow Analysis Around A Rotor-Stator with Rotor-Stator Interaction (로터-스테이터 상호작용을 고려한 3차원 유동 해석)

  • Kim K. H.;Jung Y. L.;Park W. G.;Lee S. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.78-83
    • /
    • 2000
  • An iterative time marching procedure for solving incompressible internal flow has been applied to the flow around a rotor-stator. This procedure solves three-dimensional incompressible Reynolds-averaged Navier-Stokes equation on a moving, time-deforming, non-orthogonal body-fitted grid using second-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. To handle rotationg geometry, the multiblock technique is applied and the overall flow domain is subdivided into two blocks. In each block, a grid is generated and flowfield is solved independently of the other blocks. The boundary data for each block is provided by the neighboring blocks using bilinear interpolation technique.

  • PDF

Numerical Analysis of Gas Flows in Microchannels in Series (직렬 미소채널 기체유장의 수치해석)

  • Chung Chan Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.221-231
    • /
    • 2004
  • A kinetic theory analysis is made of low-speed gas flows in a microfluidic system consisted of three microchannels in series. The Boitzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. For the evaluation of the present method results are compared with those from the DSMC method and an analytical solution of the Navier-Stokes equations with slip boundary conditions. Calculations are made for flows at various Knudsen numbers and pressure ratios across the channel. The results compared well with those from the DSMC method. It is shown that the analytical solution of the Navier-Stokes equations with slip boundary conditions which is suited fur fully developed flows can give relatively good results. In predicting the geometrically complex flows up to a Knudsen number of about 0.06. It is also shown that the present method can be used to analyze extremely low-speed flow fields for which the DSMC method is Impractical.

  • PDF

Numerical Study for Design of Center-body Diffuser (Center-body 디퓨져 형상설계를 위한 수치적연구)

  • Kim, Jong-Rok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.487-491
    • /
    • 2009
  • A study is analyzed on the design factor of Center-body diffuser and performed on conceptual design of Center-body diffuser with Computational Fluid Dynamic. The flow field of Center-body diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\omega}$ turbulence model. The center-body diffuser is compared with second throat exhaust diffuser in terms of starting pressure, the degree of vacuum pressure, the design factor.

  • PDF

Numerical Computation of Laminar Flow over a Backward Facing Step (Beckward Facing Step의 층류 유동 수치계산)

  • Van, Suck-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.150-161
    • /
    • 1993
  • 원초변수를 이용한 Navier-Stokes 방정식의 수치계산기법을 개발하고, 이를 응용하여 backward facing step의 층류 유동을 계산하였다. 직교좌표계에서의 비압축성 Navier-Stokes방정식을 풀기위해 시간과 공간항을 2차 정도의 유한 차분을 사용하여 이산화하였고 비교차격자계를 사용하여 양해법으로 수치 계산하였다. 운동량방정식과 연속방정식으로 부터 유도된 압력방정식(pressure-poisson equation)을 이용하여 무발산 조건을 만족시켰ㄲ다. Backward facing step의 층류 유동을 100.$\leq$R$_e$$\leq$1000 범위에 대해서 수치 계산하였으며 실험결과와 잘 일치하는 결과를 구할 수 있었다. 특히 step뒤에서 생기는 박리구간의 길이는 다른 계산결과들보다 실험치에 가까운 값을 얻을 수 있었으며, Re가 600보다 클때는 위쪽 벽에 또 다른 박리 유동이 발생되는 현상이 예측되었다.

  • PDF

NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK (디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션)

  • Park, J.C.;Kim, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

Secondary Steady Flows Due to the Small-Amplitude In-Phase Oscillation of Multi-Cylinders (다수의 주상체들의 저진폭 동위상 진동에 의한 2차 정상유동 해석)

  • Kim, Seong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.649-658
    • /
    • 1996
  • Small-amplitude harmonic oscillations of multi-cylinders are considered both experimentally and theoretically. For the theoretical model, the flow regime is separated into inner and outer regions. In the inner region, the flow is governed by the generalized Stokes boundary layer equation. In the outer region, the full Navier-Stokes equation for the steady streaming flow is solved numerically by using ADI scheme and FVM coupled with the boundary integral method. Flow visualization experiments are conducted by using the Laser Sheet Image Technique. The case of two circular cylinders and square cylinders with variable distances are chosen as a typical example. Although experimental results are based on the flow in the finite domain, both experimental and numerical results agree well qualitatively. As the separation of cylinders is increased, a numerical result shows the asymptotic convergence to a single cylinder case.