Numerical Analysis of Gas Flows in Microchannels in Series
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ABSTRACT

A kinetic theory analysis is made of low-speed gas flows in a microfluidic system consisted of three microchannels
in series. The Boltzmann equation simplified by a collision model is solved by means of a finite difference
approximation with the discrete ordinate method. For the evaluation of the present method results are compared with
those from the DSMC method and an analytical solution of the Navier-Stokes equations with slip boundary
conditions. Calculations are made for flows at various Knudsen numbers and pressure ratios across the channel. The
results compared well with those from the DSMC method. It is shown that the analytical solution of the Navier-
Stokes equations with slip boundary conditions which is suited for fully developed flows can give relatively good
results in predicting the geometrically complex flows up to a Knudsen number of about 0.06. It is also shown that the
present method can be used to analyze extremely low-speed flow fields for which the DSMC method is impractical.

Keywords : MEMS, Microchannel Flow, Boltzmann Equation, BGK Model, Discrete Ordinate Method, Finite
Difference Method

Nomenclatures 1. Introduction
4.+ collision frequency Microchannels are important components of
d : characteristic length micro-electro-mechanical systems(MEMS) which
F : local equilibrium distribution have been the subject of increasingly active
f : number density distribution function research during the last three decades. The length
G,H : reduced equilibrium distribution scale of microchannels in MEMS devices is

typically on the order of microns. The Knudsen
number of the flow field, the ratio of the mean
free path to the characteristic channel dimension,
is wusually not negligibly small even at

g,h : reduced distribution function

L : length of channel
Kn . Knudsen number, A/d

m. . mass ofmolgcule atmospheric  operating  conditions. Hence,
n : number density conventional computational fluid dynamics
n, + wall number flux (CFD) methods which are based on continuum
P : pressure assumptions may not be appropriate and a method
R . gas constant based on kinetic gas theory is required to describe
T : temperature the flows accurately.
U : macroscopic flow velocity Of the various methods available for the
v : molecular velocity analysis of microchannel flows, the direct
Y : height of channel simulation Monte-Carlo (DSMC) method [1] has
' been used by many researchers [2-6]. The DSMC
A : molecular mean free path method has been known to be a robust and
H . coefficient of viscosity accurate method because it is based on kinetic gas
w : VHS exponent theory and does not rely on the continuum
v : BGK model constant assumption that is not valid for high Knudsen
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number gas flows. Even though the DSMC
method has been successfully applied for the
analysis of various kind of rarefied gas flows,
simulation of low-speed microchannel flows
using the DSMC method suffers from several
difficulties including large statistical scatter that
has not been encountered in the high speed gas
flow simulations. To get a meaningful result by
reducing the large statistical noise, the DSMC
method requires huge amount of computational
effort due the number of time steps to reach the
steady-state flow condition and the large number
of sample size [4]. These computational demands
can render the standard DSMC method
impractical given current computing power
limitations. Due to the difficulties, most of the
reported DSMC simulations have been dealing
with simple microchannels with very small
length-to-height (L/H) ratio and relatively large
pressure ratio.

In the present study a finite-difference
method coupled with the discrete-ordinate method
[7.8] is employed to analyze low-speed gas flows
in a microfluidic system. In the method,
Boltzmann equation simplified by a collision
model (BGK equation) [9] is solved by means of
a finite-difference approximation. The physical
space is transformed by a general grid-generation
technique. The velocity space is transformed to a
polar coordinate and the concept of the discrete
ordinate method is employed to discretize the
velocity space. The modified Gauss-Hermite
quadrature [10,11] and Simpson’s rule are used
for the integration of the discretized velocity
space.

To assess the present method, calculations are
made for flows inside a microfluidic system
consisted of three microchannels in series. Results
are compared with those from the DSMC method
and an analytical solution of the Navier-Stokes
equations with slip boundary conditions [12].
Calculations are made for flows at various
Knudsen numbers from 0.06 to 10 and pressure
ratios across the channel from 1.05 to 2.5.

2. Numerical Method

2.1 Model Equation

We consider the steady-state Boltzmann
equation with the BGK model [9] in a two-
dimensional Cartesian coordinate system

v -
gty =AFE-H O

where  f(x, y,VX,Vy,VZ) is the distribution
function, x and y are Cartesian coordinates of
the physical space, V., Vy, and ¥V, are the
velocity components of the molecules, and A4, is
the collision frequency. The equilibrium Maxwell-
Boltzmann distribution F is given by

F =nQ2zRT)>exp[-(V -U)2/2RT] ()

The moments », U , and T can be
obtained by integrating the distribution function
over the velocity space:

n=(fav (3a)
nU=[vfav (3b)
3nRT = [(V -UY* f aV (3¢)

where R denotes the gas constant, » the
particle density, U the macroscopic flow
velocity.

The following reduced distribution functions
are introduced to reduce the number of
independent variables:

gy VeV, = [ fuy Vo V,.V.) dV,  (49)

h(x,p. ¥ V) = [TV (9, V,.V,) dv, (4b)

These kinds of reduced distribution
functions were first applied by Chu [13] and
employed by many investigators. The
corresponding  equations for the reduced
distribution functions are obtained by integrating
out the V, dependence with the weighting
functions 1 and V,C2 , respectively:

og og
V.—=+V —==A4.(G- Sa
“ox ey (G-g) (52)
Vxﬂ+Vyﬂ=Ac(H—h) (5b)
ox oy
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Gy V¥, = [T F dv, (50)

Hx,y. V.V, = [T VIF dv, (5d)

Using the characteristic length of a flow

field 4 and the most probable speed V,
defined as

V, = J2RT, 6)
the following dimensionless variables are
introduced:
k=x/d , p=yid , h=nin, ., V.=V,/V, ,
U=U¥, , T=TIT, , A4 =4dIV,
g=gViin, , h=hin, , G=GVlIn, |,
H=H/In,, t=t/1/2mnU2) )

where the subscript refers to a reference
condition .
By introducing a polar coordinate system,

which is defined as

o

V.=Vsing (8a)

V, =Vcosg (8b)

$=tan”'(V, /7)) (80)
and applying general transform rules, the

governing equations in the new coordinate system
(&,77) are written as [7)

og og - A .
B=+C=2=4(G- 9
on oz (G-g) (%9a)
BE}?—+C6—=AL.(H—/1) (%b)
on o¢
B =(x; cosg—j,sing) V'/J, (9¢)
C=(y,sing-x,cosp) V/J, (9d)
Here, J, denotes the Jacobian of the
transformation.

2.2 Discrete Ordinate Method
In order to remove the velocity-space
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dependency from the reduced distribution
functions, the discrete ordinate method [7,8] is
employed. This method, which consists of
replacing the integration over velocity space of
the distribution functions by appropriate
integration formulas, requires the values of the
distribution functions only at certain discrete
speeds and velocity angles. Employing discrete
distribution  functions g, (£,7,V5,4,) and
hse (£,1,V5,8,) for the discrete speed Vs and
velocity angle ¢, the macroscopic moments
given by integrals over the molecular velocity
space can be substituted by the following
quadratures:

A=) PP iy, (10a)
J o
ﬁ0x=ZZP§PJV53in a-gA&‘o- (IOb)
J o

ﬁUy :§ZE)PUV0 COS¢D.éo'O- (IOC)
o

3T /2= %Y PP, (hyy +VE§5s)
5 o
~AUZ +U2) (10d)

where P; and P, are weighting factors of the
quadratures for the discrete speed V; and
velocity angle ¢, respectively. Thus instead of
solving the equations for a function of space and
molecular velocity, the equations are transformed
to partial differential equations, which are
continuous in space but are point functions in
molecular speed, Vs, and velocity angle, ¢, as
follows:

b s 4o .
B, a;f’ +Cy, 02“ =A4,(Gy, —85,) (1la)
oh Ohsy o~ oo
3506—‘:701»%8—2:4,(1150—;1&) (11b)
B(50'=(‘£§Cos¢a'_j}55in¢cr) I/(Y/Jt (IIC)
Csp = (J,sing, — %, cosd,) Vs/J, (11d)

2.3 Collision Frequency



The simplest model for the collision integral
is the BGK model [9] which has been widely used
and generally gives reasonable results with much
less computational effort. In the BGK model the
collision frequency is given by

4,=yL (12)
7

where the quantity @ is the viscosity index, and
¥ is a numerical parameter. The coefficient of
viscosity, x, is assumed to have a temperature
dependency [14]

T w
A [_J (13)
Hy \To
The equilibrium mean free path for the VHS
model [15] is employed

16 F.u
Ry =t (14)
5 mn,\27RT,
where the quantity F, is given by
5-2w)(7-
F, _5-20)(7-20) (15)
24
Combining Eqgs. (12) to (15), we obtain
~ Sl
4, ST - (16)
sz Kn,

where Kn, is the Knudsen number at the
reference condition based on the characteristic
length of the flow field,d .

2.4 Numerical Procedure

Equations (lla) and (11b) are solved by
means of finite-difference approximations in
physical space using simple explicit and implicit
schemes depending on the characteristics of
physical and velocity space. Details of the method
can be found elsewhere [7]. Resulting system of
nonlinear algebraic equations is solved by means
of successive approximations. In the iterative
procedure, only the values of 4., G5, , and
H 4, have to be determined from moments of the
previous iteration, and the values of distribution
functions do not need to be stored. Convergence
is assumed to have occurred when the relative
differences in the x-velocities of two successive
iteration steps are less than 10~ for all spatial
grid points. As a proper quadrature formula for

the discrete speed ¥y, the modified Gauss-
Hermite half range quadrature for integrals of the
form [10,11] is used:

) N
[ 77 exo(-v?) 0)av =3 BOWs)  (17)
8=l

2.5 Boundary Conditions

The following boundary conditions are used
for the calculation. At inlet and exit boundaries,
the distribution functions are given by an
equilibrium  distribution  with  prescribed
conditions:

£y =y (27RT,) "% exp[~(V —U,)? / 2RT, 1 (18)

where the subscript , refers to conditions at the
boundaries.

In order to specify the interaction of the
molecules with the surface, diffuse reflection is
assumed, i.e., molecules that strikes the surface
are subsequently emitted with a Maxwell
distribution  characterized by the surface
temperature T, :

f =1, (27RT,)>" exp[-(¥ ~U,,)* /2RT,]
for (V-A)<0 (19)

where the subscript ,, refers to conditions at the
surface, n is the inward normal vector to the
surface. The wall number flux », is not known
a priori, and may be determined by applying the
condition of no net flux normal to the surface:

V@) fdV =— V@) f,dV (20

-{V-ﬂ)>0 LV-;.)<0

3. Results and Discussion

We consider a two-dimensional microfluidic
system consisted of 3 microchannels in series as
shown in Fig. 1. The gas is air with the viscosity
index of @ =0.77. The pressures at the inlet and
the exit are 2.5x10° and 1.0x10° Pa,
respectively. The temperature at the inlet is 300K.
The diffuse boundary condition at the wall
temperature of 300K is used. The coefficient of
viscosity and the reference molecular diameter of
air are assumed to be u = 1.791x107° N -s/m?
and d,, = 4.20A, respectively. The average
Knudsen number calculated using the flow
variables at the mean pressure P=(P, +F;)/21is
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Kn = 0.06. The exponent ;j and the order of
the quadrature N in Eq. (17) are chosen to be 1
and 16, respectively. Simpson’s 3/8thrule with
A¢ = 7 /30 is used for the discrete velocity angle.
The BGK mode!l parameter y was chosen to be
1.3 for the problems considered in the present
study. In case of the hard sphere molecules the
BGK model parameter i usually assumed to be
between 2/3 and 1 [16] from the well known
behavior of the BGK model, which needs further
investigation.

To Iy
P\: Yu v Y(‘ Yd ’d
I« L —H<~-~»~L(~—~— b i ~w

Fig. 1. Geometry of a microfluidic system
consisted of 3 microchannels in series.

Table 1: Summary of parameters

L,, L; 7.5 um
L. 15 um
Y., ¥, 1.0 um
Y, 0.5 um
,, T;, T, 300K

To check the accuracy of the present method,
the results are compared with those from the
DSMC method and the analytical solution of the
Navier-Stokes equations with slip boundary
conditions [12].

The DSMC code used in the present study is
based on the same principles as described in Bird
[1], together with the variable hard sphere (VHS)
model [15] as a molecular model and the no time
counter (NTC) method [17] as a collision
sampling technique. The code has been applied
to various low-density flows of gas mixtures in
arbitrary shaped flow domains [18,19]. Details of
the code may be found in Ref. 18.

At the inlet and outflow boundaries, the
pressure boundary condition adopted by Nance et.
al. [5] is used to correct the variables at the
boundaries both for the present and the DSMC
methods. For the calculations only upper half
portion of the flow domain is considered with a
symmetric boundary condition along the

225

centerline. For the DSMC calculation, a
rectangular grid system of 24,000 (160x50+
320x25+160x50) cells is employed with ca.
1,040,000 particles and 75,000 sampling time
steps(average sampling size of ca. 3.2x 10° per
cell) after 50,000 time steps of development. For
the present method a rectangular grid system of
161x51+ 321x26+160x51 grids is employed. CPU
times required for the DSMC and the present
methods were ca. 116 and 39hrs, respectively. All
the calculations in the present work are performed
on a desktop computer with a Pentium IV 3.2GHz
processor.

Details of the analytical solution of the
Navier-Stokes equations may be found in Ref. 12.
In the method the Navier-Stokes equations are
solved for a long 2-D isothermal channel in the
slip flow regime with slip boundary conditions

oU
U, = OA(—) ., 19
Y ]

wall
where the quantity ¢ represents the streamwise
momentum accommodation

_2-9,
T8

0 (20)

m

and &, is the tangential momentum coefficient,
which varies from =zero (specular or zero
accommodation) to one (full accommodation):

P(x) =

(60 K, +Rp )* ~X[(R} ~1)+120 K,(Rp ~1)]
66 K, @21

1 dP
e (i A A ) B

where x and y are the streamwise distances
from the inlet and the lateral distance from the
centerline, respectively; P and X are
nondimensionalized pressure and x distance
normalized by the exit pressure and the channel
length, respectively; U(x,y) is x-velocity;
subscript , represents a value at the exit; the
tangential momentum coefficient 8,, was set to
be 0.85 to fit experimental results [6]. In the
equations, K is a Knudsen number given by:

K= _”Z@ 23)
2 Re



where Ma is Mach number, Re is Reynolds
number, and y is the ratio of specific heats.
Figures 2 and 3 show the comparison of x -
velocity and pressure contours, respectively,
obtained by the present and the DSMC methods.
The contours in the upper half portion of the
figure are results of the present method and those
in the lower half portion are results calculated by
the DSMC method. In the figures the unit of

y(micron)

velocity is m/s and the pressure is
nondimensionalized by the inlet pressure P,. The
variation of x -velocity in the streamwise
direction is very small at the first and third
channels and the most of the pressure drop occurs
in the second channel. The variation of pressure in
the lateral direction is negligible. It can be seen
that the pressure at the location x/L = 0.5 is
larger than the mean pressure 0.7.

Fig. 2. Comparison of x-velocity contours for

0.5

P /P, =25 and Kn = 0.06.
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Fig. 3. Comparison of pressure contours for 2,/P, =2.5and Kn =0.06.
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Fig. 4. Comparison  of  x-velocity  Fig 5. Comparison  of  x—velocity

distributions along the centerline for
P /P, =25and Kn =0.06.

distributions along the centerline for
P /P, =25and Kn =0.06.
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Fig. 6. Comparison of pressure

distributions along the centerline for
P /P, =2.5and Kn =0.06.

Figure 4 shows x-velocity profiles at x= 5,
10, and 15 pm from the present and the DSMC
methods together with those from the analytical
solution of the Navier-Stokes equations with slip
boundary conditions(A-NS). The results for the
analytical solution of the Navier-Stokes equations
with slip boundary conditions are obtained by
assuming the pressures at the junctions and the
mass fluxes through the three channels are equal,

e
th

y(micron)
(=}

1
.O
17,

Tpritnprnrg

which means entrance and exit effects are
neglected. It can be seen that the results from the
present method compare very well with those
from the DSMC method. The results from the
analytical solution of the Navier-Stokes equations
compare relatively well except for some
differences near the surface.

Figures 5 and 6 compare x-velocity and
pressure distributions, respectively, along the
centerline of the channel from three different
methods. The flow remains slow in the first
channel, accelerates through the second channel,
and the velocity drops sharply at the entrance of
the third channel where the flow expands. It can
be seen that the results from the present and the
DSMC methods compare very well.

The velocity distribution from the Navier-
Stokes equations with slip boundary conditions
shows relatively good agreement except at the
junctions due to entrance and exit effects. There
were little differences among the pressure

distributions obtained by the three different
methods. It is very interesting to see that the
analytical solution of the Navier-Stokes equations
with slip boundary conditions which is suited for
fully developed flows can give relatively good
results in predicting the geometrically complex
flows.

Fig. 7. Comparison of x-velocity contours for P,/P, =2.5and Kn = 10.

0.5 —
2SI ] FDDO T
= Ly T ) 1
S| e ST e
S R G HUIIE T U A
TS B ol DSMC to
A T S U A T T T T S TN S U TR VU SN NN ST UR IS T (NN TS SN SN N |
0 5 10 15 20 25 30
x(micron)

Fig. 8. Comparison of pressure contours for P,/P, =2.5and Kn = 10.
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To check the accuracy of the present method
at free-molecular flow regimes, calculations are
made for a flow at an average Knudsen
number Kn = 10 by reducing the inlet and exit
pressures while keeping the pressure ratio P, /P,
=25.

present
DSMC
-—-= A-NS

X-velocity (m/s)

04
x/L

0.2

Fig. 9. Comparison of x-velocity
distributions along the centerline for
P /P, =25and Kn =10.

Figures 7 and 8 show the comparison of x -
velocity and pressure contours, respectively, at
Kn = 10 obtained by the present and the DSMC
methods. The contours in the upper half portion of
the figure are results of the present method and
those in the lower half portion are results
calculated by the DSMC method. It can be seen
that the results from the present and the DSMC
methods compare well except for the large
statistical scatter in the x -velocity contours
obtained by the DSMC method. It also can be
seen that the flow is much slower than that of
Kn 0.06. Figure 9 compares x-velocity
distributions along the centerline of the channel
from the three different methods. It can be seen
that the results from the present and the DSMC
methods compare very well. As expected, the
velocity distribution from the analytical solution
of the Navier-Stokes equations with slip boundary
conditions shows poor agreement since the
method is based on the continuum assumptions.

To investigate the applicability of the
analytical solution of the Navier-Stokes equations
with slip boundary conditions, x-velocity
distributions along the centerline of the channel
are compared with those from the present method
at Knudsen numbers Kn = 0.06, 0.1, and 0.5 as
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shown in Fig. 10. It should be noted that Kn
0.1 is the boundary between the slip and transition
flow regimes. It can be seen that as Knudsen
number increases the difference in the velocity
distributions increases, which implies that ca.
Kn = 0.06 is the highest Knudsen number the
Navier-Stokes equations with slip boundary
conditions can be used.

35

T T
[ solid line: present

30 |- dotted line : A-NS

25

20

15

X-velocity (m/s)

Fig. 10. Comparison of x-velocity
distributions along the centerline at slip
and transition flow regimes for P,/F,
2.5.
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Fig. 11. X-velocity and pressure contours
for P/P, =1.05and Kn = 0.06.

It is well known that the DSMC method
requires huge amount of computational effort to
get a meaningful result by reducing the large
statistical noise in the simulation of low-speed
flows [4]. These computational demands can
render the standard DSMC method impractical
given current computing power limitations. The
present method does not suffer from the statistical



noise and can be used for the simulation of
extremely low-speed flows. To assess the
feasibility of the present method at low speed
flows, calculations are made for flows through the
channel with several different pressure ratios.
Figure 11 shows x -velocity and pressure
contours in the channel for a pressure ratio
of P,/ P, = 1.05. The contours in the upper half

portion of the figure are x-velocity contours and
those in the lower half portion are pressure
contours. The variation of x -velocity in the
streamwise direction is very small and the
variation of pressure in the lateral direction is
negligible. It can be seen that the pressure at the
location x/L = 0.5 almost equals to the mean
pressure 0.976.

The magnitude of x -velocity in the first
channel are less than or equal to 0.45m/s . If the
DSMC method is employed and a 3% noise is
allowed(see Fig. 2), the required sample size
would be ca. 9.5x10% per cell. The required CPU
time for the DSMC method would be ca. 34,800
hrs(or ca. 4 years) on the Pentium IV 3.2GHz
PC used in the present study. The required CPU
time for the present method was ca. 41hrs using
the converged solution of the case of P,/ P, =2.5
as an initial guess.

Figure 12 shows x -velocity distributions
along the centerline of the channel for several

different pressure ratios from £, / P, =1.05t02.5.

The velocity distributions from the present
method and the Navier-Stokes equations with slip
boundary conditions show relatively good
agreement except at the junction due to entrance
and exit effects. Figure 13 shows centerline x-
velocities from the present and and the Navier-
Stokes equations with slip boundary conditions at
x/L=0.1, 0.5, and 0.9. The results from the two
methods are in good agreement.

4. Conclusions

A finite-difference method coupled with the
discrete-ordinate method is employed to analyze
low-speed gas flows in a microfluidic system
consisted of three microchannels in series. For the
evaluation of the present method results are
compared with those from the DSMC method and
an analytical solution of the Navier-Stokes
equations with slip boundary conditions.
Calculations are made for flows at various
Knudsen numbers from 0.06 to 10 and pressure
ratios across the channel from 1.05 to 2.5. The

results compared well with those from the DSMC
method. It is shown that the analytical solution of
the Navier-Stokes equations with slip boundary
conditions which is suited for fully developed
flows can give relatively good results in
predicting the geometrically complex flows up to
a Knudsen number of about 0.06. The advantage
of the present method is that it does not suffer
from statistical noise which is common in particle
based methods. It is shown that the present
method can be used to analyze low-speed flows
that would be almost impossible for the DSMC
method.
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L solid line : present
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Fig. 12. Comparison of x—velocity
distributions along the centerline at
several pressure ratios across the channel
at Kn = 0.06.
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