• Title/Summary/Keyword: Stokes 수

Search Result 531, Processing Time 0.024 seconds

On Generation Methods of Oblique Incidence Waves in Three-Dimensional Numerical Wave Tank with Non-Reflected System (3차원 무반사 수치파동수조에서 경사입사파의 조파기법 개발)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.401-406
    • /
    • 2011
  • In this study, generation methods of oblique incident wave are newly proposed and examined using the fully non-linear numerical model with non-reflected wave generation system(LES-WASS-3D). In order to verify, free surface elevation and horizontal velocities are compared with $3^{rd}$ -order Stokes wave theory in 3-D oblique incident wave field. As a results, it is revealed that the numerical results by newly proposed technique are in good agreement with the theory.

Improvement of Wave Generation for SWASH Model Using Relaxation Method (이완법을 이용한 SWASH 모형의 파랑 조파기법 개선)

  • Shin, Choong Hun;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.169-179
    • /
    • 2017
  • In this study, we applied the wave generation method by relaxation method to the SWASH model, which is a non - hydrostatic numerical model, for stable and accurate wave generation of linear and nonlinear waves. To validate the relaxation wave generation method, we were simulated various wave, including the linear wave and nonliner wave and compared with analytical solution. As a result, the incident wave was successfully generated and propagated in all cases from Stokes waves to cnoidal wave. Also, we were confirmed that the wave height and the waveform were in good agreement with the analytical solution.

Numerical Analysis and Control of Open Cavity Flow (열린 공동 유동의 수치적 모사 및 Jet Blowing 을 이용한 제어)

  • Chang, Kyung-Sik;Park, Seung-O;Choi, Hun-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.101-108
    • /
    • 2002
  • A numerical simulation of an incompressible cavity flow is conducted. Two dimensional Navier-Stokes equations are integrated using staggered grid and a finite volume method with C-QUICK scheme for spatial derivatives and fully implicit scheme for the time derivatives. SIMPLE-C algorithm is employed to solve the pressure field. Computational results show that the third eddy is generated in the shear layer mode but not in the steady mode. This signifies that the third eddy plays an important role in cavity flow stability. As a means to control the flow, jet blowing is applied to a position below the cavity upstream edge. Effects of flow control parameters on the stability such as the frequency, the phase, and the velocity magnitude are reported.

Microchannels for the Flow Control of Two Fluids with Different Volumes (부피가 다른 두 유체의 효과적인 유동제어를 위한 미세채널)

  • La, Moon-Woo;Ho, Jae-Yun;Kim, Dong-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.89-95
    • /
    • 2012
  • In this paper, microchannels for the flow control of two fluids with different volumes have been designed, fabricated, and verified. The dimensions of the inlets were determined based on the Stokes equation in order to realize that the flow of the two fluids meet at the same time, and to maintain a certain configuration when the flows passed through each inlet channel. The designed microchannels were confirmed using computational fluid dynamics simulation for the incompressible, Newtonian, and transient flows. In addition, a microfluidic system containing the designed microchannels was fabricated by soft lithography, and the pressure-driven flows of the two fluids were characterized by microfluidic experiments.

Numerical Analysis of Partial Cavitaing Flow Past Axisymmetric Cylinders (축대칭 실린더형상 주위 부분공동 유동의 전산해석)

  • Kim, Bong-Su;Lee, Byung-Woo;Park, Warn-Gyu;Jung, Chul-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.69-78
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many hydraulic engineering systems, such as pump, turbine, nozzle, injector, etc. In the present work, a solver for cavitating flow has been developed and applied to simulate the flows past axisymmetric cylinders. Governing equations are the two-phase Navier-Stokes equations, comprised of continuity equation of liquid and vapor phase. The momentum equation is in the mixture phase. The solver employed an implicit, dual time, preconditioned algorithm in curvilinear coordinates. Computations were carried out for three axisymmetric cylinders: hemispherical, ogive, and caliber-0 forebody shape. Then, the present calculations were compared with experiments and other numerical results to validate the present solver. Also, the code has shown its capability to accurately simulate the re-entrant jet phenomena and ventilated cavitation. Hence, it has been found that the present numerical code has successfully accounted for cavitating flows past axisymmetric cylinders.

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • 김희동;이준희;우선훈;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.33-40
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Wavier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are blown, we can predict the critical mass flow with good accuracy.

  • PDF

Optimum Inverse Design of 2-D Cascade Airfoil (2차원 익렬 익형의 최적역설계)

  • 조장근;박원규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • The present paper describes the optimum inverse design of 2-D linear cascade airfoil. The pressure coefficient of an airfoil surface is taken as the objective function, and non-orthogonal incompressible Navier-Stokes equation is applied to calculate the pressure coefficient. Both of steepest descent and conjugate gradient method have been used to make the objective function go to zero. The 1st order finite differential method is applied to the searching direction and the golden section method is used to compute the searching distance. As a result of the present work, a good convergence to the target airfoil has been obtained.

An Unsteady Numerical Method of Autorotation and the Effect of 2D Aerodynamic Coefficients (자동회전의 비정상 수치해법과 2차원 공력계수의 영향)

  • Kim, Hak-Yoon;Sheen, Dong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.121-130
    • /
    • 2009
  • An unsteady numerical simulation method for an autorotating rotor in forward flight was developed. The flapping and rotational equations of motion of autorotation are continuously integrated for given time steps, meanwhile the induced velocity field at disc plane is obtained by the dynamic inflow theory embodying the unteadiness. The transitions from arbitrary initial states to equilibrium states were simulated. Steady autorotations as numerical solutions of equations were predicted by using two sources of blade airfoil data. The simulations using airfoil data which were obtained by a two dimensional Navier-Stokes solver in terms of angles of attack and Reynolds numbers have shown good agreements with wind tunnel experimental results.

Comparison of Algorithm & Turbulence Modelling for Calculation of Compressor Cascade Flows (압축기 익렬 유동해석을 위한 알고리즘과 난류 모델의 비교 연구)

  • 김석훈;이기수;최정열;김귀순;임진식;김유일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.59-69
    • /
    • 2000
  • A numerical analysis based on two-dimensional, incompressible and compressible Navier-Stokes equations was carried out for double circular arc compressor cascade and the results are compared with available experimental data. The incompressible code based on SIMPLE algorithm adopts pressure weighted method and hybrid scheme for the convective terms. The compressible code with preconditioning method involves a upwind-biased scheme for the convective terms and LU-SGS scheme for temporal integration. Several turbulence models are evaluated by computing the turbulent viscous flows; Baldwin-Lomax, standard $\kappa$ -$\varepsilon$, $\kappa$ -$\varepsilon$ Lam. Bremhorst, standard $\kappa$-$\omega$, $\kappa$ -$\omega$ SST model.

  • PDF

The change of deflagration to detonation transition by wall cooling effect in ethylene-air mixture (에틸렌-공기 혼합물에서 벽면 온도 감소에 의한 연소폭발천이 현상 변화)

  • Gwak, Min-Cheol;Kim, ki-Hong;Yo, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.457-462
    • /
    • 2011
  • This paper presents a numerical investigation of deflagration to detonation transition (DDT) induced by shock wave and flame interaction in ethylene-air mixtures. Also shows the change of DDT triggering time by wall cooling effect. A model is consisted of the compressible reactive Navier-Stokes equations. And the effect of viscosity, thermal conduction, molecular diffusion, chemical reaction and wall effect are included. Using this model, the generation of hot spot by repeated shock and flame interaction, occurrence of detonation, and wall cooling effect of detonation confining boundaries are studied.

  • PDF