DOI QR코드

DOI QR Code

Improvement of Wave Generation for SWASH Model Using Relaxation Method

이완법을 이용한 SWASH 모형의 파랑 조파기법 개선

  • Shin, Choong Hun (Industry-University Cooperation Foundation, ERICA Campus, Hanyang University) ;
  • Yoon, Sung Bum (Dept. of Civil, Env. and Plant Engrg., ERICA Campus, Hanyang University)
  • 신충훈 (한양대학교 ERICA 산학협력단) ;
  • 윤성범 (한양대학교 건설환경플랜트공학과)
  • Received : 2017.06.30
  • Accepted : 2017.07.26
  • Published : 2017.08.31

Abstract

In this study, we applied the wave generation method by relaxation method to the SWASH model, which is a non - hydrostatic numerical model, for stable and accurate wave generation of linear and nonlinear waves. To validate the relaxation wave generation method, we were simulated various wave, including the linear wave and nonliner wave and compared with analytical solution. As a result, the incident wave was successfully generated and propagated in all cases from Stokes waves to cnoidal wave. Also, we were confirmed that the wave height and the waveform were in good agreement with the analytical solution.

본 연구에서는 선형 및 비선형파의 안정적이고 정확한 조파를 위해 이완법을 이용한 조파기법을 비정수압 수치모형인 SWASH 모형에 적용하였다. 이완법을 이용한 조파기법을 검증하기 위해 선형파와 비선형파인 경우에 대해 수치실험을 수행하였고 해석해와 비교하였다. 그 결과 Stokes 파 영역으로부터 cnoidal 파 영역에 이르는 모든 경우의 입사파랑이 성공적으로 생성되고 전파되었다. 또한 파고와 파형이 해석해와 잘 일치하는 것을 확인할 수 있었다.

Keywords

References

  1. Allan P. Engsig-Karup. (2006). Unstructured nodal DG-FEM solution of high-order Boussinesq-type equations. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark.
  2. Chawla, A. and Kirby, J.T. (2000). A source function method for generation of waves on currents in Boussinesq models. J. Fluid Mech., 22, 75-83.
  3. Chen, Y. and Hsiao, S. (2016). Generation of 3D water waves using mass source wavemaker applied to Navier-Stokes model. Coastal Eng., 109, 76-95. https://doi.org/10.1016/j.coastaleng.2015.11.011
  4. Choi, J.W. and Yoon, S.B. (2009). Numerical simulation using momentum source wave-maker applied RANS equation model. Coastal Eng., 56(10), 1043-1060. https://doi.org/10.1016/j.coastaleng.2009.06.009
  5. Fenton, J.D. (1979). A high-order cnoidal wave theory. J. Fluid Mech., 94, 129-161. https://doi.org/10.1017/S0022112079000975
  6. Fenton, J.D. (1985). A fifth-order Stokes theory for steady waves. J. Waterw. Port Coast. Ocean Eng., 111(2), 216-234. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(216)
  7. Fuhrman, D.R. and Madsen, P.A. (2006). Short-crested waves in deep-water : a numerical investigation of recent laboratory experiments. J. Fluid Mech., 559, 391-411. https://doi.org/10.1017/S0022112006000486
  8. Fuhrman, D.R., Madsen, P.A. and Bingham, H.B. (2006). Numerical simulation of lowest-order short-crested wave instabilities. J. Fluid Mech., 563, 415-441. https://doi.org/10.1017/S0022112006001236
  9. Ha, T., Don, N. and Cho, Y. (2012). Directional wave generation in the Navier-Stokes equations using the internal wave maker. Journal of Korea Water Resources Association, 45(6), 545-555 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.6.545
  10. Ha, T., Lin, P.Z. and Cho, Y.S. (2013). Generation of 3D regular and irregular waves using Navier-Stokes equations model with an internal wave maker. Coastal Eng., 76, 55-67. https://doi.org/10.1016/j.coastaleng.2013.01.013
  11. Jamois, E., Fuhrman, D.R., Bingham, H.B. and Molin, B. (2006). A numerical study of nonlinear wave run-up on a vertical plate. Coastal Eng., 53(11), 929-945. https://doi.org/10.1016/j.coastaleng.2006.06.004
  12. Kim, G., Lee, C. and Suh, K.D. (2004). Internal generation of waves for time-dependent wave transformation equations - the line source method and the source function method. KSCE J. Civil Engrg., 24(6B), 585-594 (in Korean).
  13. Kim, G., Lee, C. and Suh, K.D. (2005). Internal generarion of nonlinear waves for extended boussineswq equations: line source method and source function method. Journal of Korean Society of Coastal and Ocean Engineers, 17(1), 21-31 (in Korean).
  14. Kim, G., Lee, C. and Suh, K.D. (2007). Internal generation of waves: Delta source function method and source term addition method. Ocean Engineering, 34, 2251-2264. https://doi.org/10.1016/j.oceaneng.2007.06.002
  15. Larsen, J. and Dancy, H. (1983). Open boundaries in short wave simulations-A new approach. Coastal Eng., 7, 285-297. https://doi.org/10.1016/0378-3839(83)90022-4
  16. Lee, C. and Suh, K.D. (1998). Internal generation of waves for time-dependent mild-slope equations. Coastal Eng., 34, 35-57. https://doi.org/10.1016/S0378-3839(98)00012-X
  17. Lee, C., Cho, Y.-S. and Yum, K. (2001). Internal generation of waves for extended Boussinesq equations. Coastal Eng., 42, 155-162. https://doi.org/10.1016/S0378-3839(00)00056-9
  18. Lee, C., Choi, H.J. and Kim, D.G. (2006). Internal generation of waves on an Arc In A rectangular grid system. Journal of Korean Society of Coastal and Ocean Engineers, 18(1), 1-14 (in Korean).
  19. Lee, C. and Yoon, S.B. (2007). Internal generation of waves on an arc in a rectangular grid system. Coastal Eng., 54, 357-368. https://doi.org/10.1016/j.coastaleng.2006.11.004
  20. Madsen, P.A., Bingham, H.B. and Schaffer, H.A. (2003). Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis. Proc. R. Soc. Lond. A., 459, 1075-1104. https://doi.org/10.1098/rspa.2002.1067
  21. Mayer, S.T., Garapon, A. and Sorensen, L.S. (1998). A fractional step method for unsteady freesurface flow with applications to nonlinear wave dynamics. Int. J. Numer. Meth. Fluids, 28, 293-315. https://doi.org/10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1
  22. Peregrine, D.H. (1967). Long waves on a beach. J. Fluid Mech., 27, 815-827. https://doi.org/10.1017/S0022112067002605
  23. Skotner, C. and Apelt, C.J. (1999). Application of a Boussinesq model for the computation of breaking waves, Part 2: Waveinduced setdown and setup on a submerged coral reef. Ocean Engineering, 26(10), 927-947. https://doi.org/10.1016/S0029-8018(98)00062-6
  24. Smit, P., Zijlema, M. and Stelling, G. (2013). Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coastal Engng., 76, 1-16. https://doi.org/10.1016/j.coastaleng.2013.01.008
  25. Stelling, G. and Zijlema, M. (2003). An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Meth. Fluids, 43, 1-23. https://doi.org/10.1002/fld.595
  26. Stelling, G.S. and Duinmeijer, S.P.A. (2003). A staggered conservative scheme for every froude number in rapidly varied shallow water flows. Int. J. Numer. Meth. Fluids, 43, 1329-1354. https://doi.org/10.1002/fld.537
  27. Wei, G., Kirby, J.T. and Sinha, A. (1999). Generation of waves in Boussinesq models using a source function method. Coastal Eng. 36, 271-299. https://doi.org/10.1016/S0378-3839(99)00009-5
  28. Zijlema, M. and Stelling, G.S. (2005). Further experiences with computing non-hydrostatic free-surface flows involving water waves. Int. J. Numer. Meth. Fluids, 48, 169-197. https://doi.org/10.1002/fld.821
  29. Zijlema, M. and Stelling, G.S. (2008). Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coastal Engng., 55, 780-790. https://doi.org/10.1016/j.coastaleng.2008.02.020
  30. Zijlema, M., Stelling, G. and Smit, P. (2011). SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engng., 58, 992-1012. https://doi.org/10.1016/j.coastaleng.2011.05.015

Cited by

  1. A Numerical Study on Flow in Porous Structure using Non-Hydrostatic Model vol.30, pp.3, 2018, https://doi.org/10.9765/KSCOE.2018.30.3.114