References
- Allan P. Engsig-Karup. (2006). Unstructured nodal DG-FEM solution of high-order Boussinesq-type equations. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark.
- Chawla, A. and Kirby, J.T. (2000). A source function method for generation of waves on currents in Boussinesq models. J. Fluid Mech., 22, 75-83.
- Chen, Y. and Hsiao, S. (2016). Generation of 3D water waves using mass source wavemaker applied to Navier-Stokes model. Coastal Eng., 109, 76-95. https://doi.org/10.1016/j.coastaleng.2015.11.011
- Choi, J.W. and Yoon, S.B. (2009). Numerical simulation using momentum source wave-maker applied RANS equation model. Coastal Eng., 56(10), 1043-1060. https://doi.org/10.1016/j.coastaleng.2009.06.009
- Fenton, J.D. (1979). A high-order cnoidal wave theory. J. Fluid Mech., 94, 129-161. https://doi.org/10.1017/S0022112079000975
- Fenton, J.D. (1985). A fifth-order Stokes theory for steady waves. J. Waterw. Port Coast. Ocean Eng., 111(2), 216-234. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(216)
- Fuhrman, D.R. and Madsen, P.A. (2006). Short-crested waves in deep-water : a numerical investigation of recent laboratory experiments. J. Fluid Mech., 559, 391-411. https://doi.org/10.1017/S0022112006000486
- Fuhrman, D.R., Madsen, P.A. and Bingham, H.B. (2006). Numerical simulation of lowest-order short-crested wave instabilities. J. Fluid Mech., 563, 415-441. https://doi.org/10.1017/S0022112006001236
- Ha, T., Don, N. and Cho, Y. (2012). Directional wave generation in the Navier-Stokes equations using the internal wave maker. Journal of Korea Water Resources Association, 45(6), 545-555 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.6.545
- Ha, T., Lin, P.Z. and Cho, Y.S. (2013). Generation of 3D regular and irregular waves using Navier-Stokes equations model with an internal wave maker. Coastal Eng., 76, 55-67. https://doi.org/10.1016/j.coastaleng.2013.01.013
- Jamois, E., Fuhrman, D.R., Bingham, H.B. and Molin, B. (2006). A numerical study of nonlinear wave run-up on a vertical plate. Coastal Eng., 53(11), 929-945. https://doi.org/10.1016/j.coastaleng.2006.06.004
- Kim, G., Lee, C. and Suh, K.D. (2004). Internal generation of waves for time-dependent wave transformation equations - the line source method and the source function method. KSCE J. Civil Engrg., 24(6B), 585-594 (in Korean).
- Kim, G., Lee, C. and Suh, K.D. (2005). Internal generarion of nonlinear waves for extended boussineswq equations: line source method and source function method. Journal of Korean Society of Coastal and Ocean Engineers, 17(1), 21-31 (in Korean).
- Kim, G., Lee, C. and Suh, K.D. (2007). Internal generation of waves: Delta source function method and source term addition method. Ocean Engineering, 34, 2251-2264. https://doi.org/10.1016/j.oceaneng.2007.06.002
- Larsen, J. and Dancy, H. (1983). Open boundaries in short wave simulations-A new approach. Coastal Eng., 7, 285-297. https://doi.org/10.1016/0378-3839(83)90022-4
- Lee, C. and Suh, K.D. (1998). Internal generation of waves for time-dependent mild-slope equations. Coastal Eng., 34, 35-57. https://doi.org/10.1016/S0378-3839(98)00012-X
- Lee, C., Cho, Y.-S. and Yum, K. (2001). Internal generation of waves for extended Boussinesq equations. Coastal Eng., 42, 155-162. https://doi.org/10.1016/S0378-3839(00)00056-9
- Lee, C., Choi, H.J. and Kim, D.G. (2006). Internal generation of waves on an Arc In A rectangular grid system. Journal of Korean Society of Coastal and Ocean Engineers, 18(1), 1-14 (in Korean).
- Lee, C. and Yoon, S.B. (2007). Internal generation of waves on an arc in a rectangular grid system. Coastal Eng., 54, 357-368. https://doi.org/10.1016/j.coastaleng.2006.11.004
- Madsen, P.A., Bingham, H.B. and Schaffer, H.A. (2003). Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis. Proc. R. Soc. Lond. A., 459, 1075-1104. https://doi.org/10.1098/rspa.2002.1067
- Mayer, S.T., Garapon, A. and Sorensen, L.S. (1998). A fractional step method for unsteady freesurface flow with applications to nonlinear wave dynamics. Int. J. Numer. Meth. Fluids, 28, 293-315. https://doi.org/10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1
- Peregrine, D.H. (1967). Long waves on a beach. J. Fluid Mech., 27, 815-827. https://doi.org/10.1017/S0022112067002605
- Skotner, C. and Apelt, C.J. (1999). Application of a Boussinesq model for the computation of breaking waves, Part 2: Waveinduced setdown and setup on a submerged coral reef. Ocean Engineering, 26(10), 927-947. https://doi.org/10.1016/S0029-8018(98)00062-6
- Smit, P., Zijlema, M. and Stelling, G. (2013). Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coastal Engng., 76, 1-16. https://doi.org/10.1016/j.coastaleng.2013.01.008
- Stelling, G. and Zijlema, M. (2003). An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Meth. Fluids, 43, 1-23. https://doi.org/10.1002/fld.595
- Stelling, G.S. and Duinmeijer, S.P.A. (2003). A staggered conservative scheme for every froude number in rapidly varied shallow water flows. Int. J. Numer. Meth. Fluids, 43, 1329-1354. https://doi.org/10.1002/fld.537
- Wei, G., Kirby, J.T. and Sinha, A. (1999). Generation of waves in Boussinesq models using a source function method. Coastal Eng. 36, 271-299. https://doi.org/10.1016/S0378-3839(99)00009-5
- Zijlema, M. and Stelling, G.S. (2005). Further experiences with computing non-hydrostatic free-surface flows involving water waves. Int. J. Numer. Meth. Fluids, 48, 169-197. https://doi.org/10.1002/fld.821
- Zijlema, M. and Stelling, G.S. (2008). Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coastal Engng., 55, 780-790. https://doi.org/10.1016/j.coastaleng.2008.02.020
- Zijlema, M., Stelling, G. and Smit, P. (2011). SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engng., 58, 992-1012. https://doi.org/10.1016/j.coastaleng.2011.05.015
Cited by
- A Numerical Study on Flow in Porous Structure using Non-Hydrostatic Model vol.30, pp.3, 2018, https://doi.org/10.9765/KSCOE.2018.30.3.114