DOI QR코드

DOI QR Code

On Generation Methods of Oblique Incidence Waves in Three-Dimensional Numerical Wave Tank with Non-Reflected System

3차원 무반사 수치파동수조에서 경사입사파의 조파기법 개발

  • Hur, Dong-Soo (Institute of marine industry, Department of Civil and Environment Engineering, Gyeongsang National University) ;
  • Lee, Woo-Dong (Department of Civil Engineering, Nagoya University)
  • 허동수 (경상대학교 해양토목공학과) ;
  • 이우동 (나고야대학 공학연구과 사회기반전공)
  • Received : 2011.04.29
  • Accepted : 2011.11.01
  • Published : 2011.12.30

Abstract

In this study, generation methods of oblique incident wave are newly proposed and examined using the fully non-linear numerical model with non-reflected wave generation system(LES-WASS-3D). In order to verify, free surface elevation and horizontal velocities are compared with $3^{rd}$ -order Stokes wave theory in 3-D oblique incident wave field. As a results, it is revealed that the numerical results by newly proposed technique are in good agreement with the theory.

본 연구에서는 3차원 수치파동수조에서 무반사 조파시스템을 이용한 경사입사파의 조파방법을 새롭게 제안하고, 계산된 수면변위 및 수평유속에 대한 수치결과와 Stokes파의 3차 근사이론값과의 비교 분석을 통하여 새로운 모델의 검증을 실시하였다. 그 결과 본 연구에서 제안한 경사입사파의 조파방법의 타당성과 유효성을 확인할 수 있었다.

Keywords

References

  1. 허동수, 이우동 (2007). 잠제 주변의 파고분포 및 흐름의 3차원 특성; PART I-해빈이 없을 경우. 대한토목학회논문집, 27(6B), 689-701.
  2. 허동수, 이우동, 배기성 (2008). 사각격자체계 수치모델에서의 경사면 처리기법에 관하여. 대한토목학회논문집, 28(5B), 591-594.
  3. Brorsen, M. and Larsen, J. (1987). Source generation of nonlinear gravity waves with boundary integral equation method. Coastal Eng., 11, 93-113. https://doi.org/10.1016/0378-3839(87)90001-9
  4. Ergun, S. (1952). Fluid flow through packed columns. Chem Eng., 48(2), 89-94.
  5. Hinatsu, M. (1992). Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface. J. kansai Soc. Nav. Archit. Japan, 217, 1-11.
  6. Hirt, C.W. and Sicilian, J.M. (1985). A porosity technique for the definition of obstacles in rectangular cell meshes. Flow Science, Inc. Los Alamos, New Mexico, 450-469.
  7. Jamois, E., Fuhrman, D.R., Bingham, H.B. and Molin, B. (2006). A numerical study of nonlinear wave run-up on a vertical plate. Coastal Eng., 53, 929-945. https://doi.org/10.1016/j.coastaleng.2006.06.004
  8. Kuroiwa, M., Takada, T. and Matsubara, Y. (2009). Nearshore current model using FAVOR method and infulence of grid size and eddy viscosity nearshore current field. Annual of J. Civil Eng. in the Ocean, JSCE, 25, 1239-1244 (in Japanese).
  9. Lee, C.H. and Yoon, S.B. (2007). Internal generation of waves on an arc in a rectangular grid system. Coastal Eng., 54, 357-368. https://doi.org/10.1016/j.coastaleng.2006.11.004
  10. Lee, K.H and Mizutani, N. (2009). A numerical wave tank using direct-forcing immersed boundary method and its application to wave force on a horizontal cylinder. JSCE, 51, 27-48.
  11. Liu, Y. Lia, Y.C. and Teng, B. (2007). The reflection of oblique waves by an infinite number of partially perforated caissons. Ocean Eng., 34, 1965-1976. https://doi.org/10.1016/j.oceaneng.2007.03.004
  12. Liu, S. and Masliyah, J.H. (1999). Non-linear flows in porous media. J. Non-Newtonian Fluid Mech., 86(1), 229-252. https://doi.org/10.1016/S0377-0257(98)00210-9
  13. Ohyama, T. and Nadaoka, K. (1991). Development of a numerical wave tank for analysis of non-linear and irregular wave field. Fluid Dyn. Res., 8, 231-251. https://doi.org/10.1016/0169-5983(91)90045-K
  14. Sakakiyama, T. and Kajima, R. (1992). Numerical simulation of nonlinear wave interacting with permeable breakwater. Proc. of 22nd Intl. Conf. on Coastal Eng., ASCE, 1517-1530.
  15. Smagorinsky, J. (1963). General circulation experiments with the primitive equation. Mon. Weath. Rev. 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  16. Takayama, T. (1982). Theoretical properties oblique waves generated by serpent-type wave makers. Rep. the Port and Harbor Research Institute, 21(2), 3-48.
  17. van Gent, M.R.A. (1995). Wave interaction with permeable coastal structures. Ph.D. Thesis, Delft University The Netherlands.
  18. Wang, B., Otta, A.K. and Chadwick, A.J. (2007). Transmission of obliquely incident waves at low-crested breakwaters_Theoretical interpretations of experimental observations. Coastal Eng., 54, 333-344. https://doi.org/10.1016/j.coastaleng.2006.10.005
  19. Wang, S.K., Hsu, T.W., Weng, W.K. and Ou, S.H. (2008). A three-point method for estimating wave reflection of obliquely incident waves over a sloping bottom. Coastal Eng., 55, 125-138. https://doi.org/10.1016/j.coastaleng.2007.09.002
  20. Zanuttigh, B. and Lamberti, A. (2006). Experimental analysis and numerical simulations of waves and current flows around low-crested rubble-mound structures. Journal of Waterway, Port, Coastal, and Ocean Eng., ASCE, 132(1), 10-27. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:1(10)

Cited by

  1. Reflection and Hydraulic Characteristics inside Two-Chamber Vertical Slit Caisson in 3-D Oblique Wave Field vol.28, pp.3, 2014, https://doi.org/10.5574/KSOE.2014.28.3.227
  2. Effect of Multi-directional Random Waves on Characteristics of 3-D Wave Field around Permeable Submerged Breakwaters vol.26, pp.2, 2012, https://doi.org/10.5574/KSOE.2012.26.2.068
  3. Wave Run-up Characteristics of Ocean Wave, Current, and Kelvin Wave Interaction in the Canal vol.27, pp.4, 2013, https://doi.org/10.5574/KSOE.2013.27.4.055
  4. Analysis on Mechanism of Wave Attenuation under Wave-Current Interaction vol.36, pp.4, 2016, https://doi.org/10.12652/Ksce.2016.36.4.0645