References
- 허동수, 이우동 (2007). 잠제 주변의 파고분포 및 흐름의 3차원 특성; PART I-해빈이 없을 경우. 대한토목학회논문집, 27(6B), 689-701.
- 허동수, 이우동, 배기성 (2008). 사각격자체계 수치모델에서의 경사면 처리기법에 관하여. 대한토목학회논문집, 28(5B), 591-594.
- Brorsen, M. and Larsen, J. (1987). Source generation of nonlinear gravity waves with boundary integral equation method. Coastal Eng., 11, 93-113. https://doi.org/10.1016/0378-3839(87)90001-9
- Ergun, S. (1952). Fluid flow through packed columns. Chem Eng., 48(2), 89-94.
- Hinatsu, M. (1992). Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface. J. kansai Soc. Nav. Archit. Japan, 217, 1-11.
- Hirt, C.W. and Sicilian, J.M. (1985). A porosity technique for the definition of obstacles in rectangular cell meshes. Flow Science, Inc. Los Alamos, New Mexico, 450-469.
- Jamois, E., Fuhrman, D.R., Bingham, H.B. and Molin, B. (2006). A numerical study of nonlinear wave run-up on a vertical plate. Coastal Eng., 53, 929-945. https://doi.org/10.1016/j.coastaleng.2006.06.004
- Kuroiwa, M., Takada, T. and Matsubara, Y. (2009). Nearshore current model using FAVOR method and infulence of grid size and eddy viscosity nearshore current field. Annual of J. Civil Eng. in the Ocean, JSCE, 25, 1239-1244 (in Japanese).
- Lee, C.H. and Yoon, S.B. (2007). Internal generation of waves on an arc in a rectangular grid system. Coastal Eng., 54, 357-368. https://doi.org/10.1016/j.coastaleng.2006.11.004
- Lee, K.H and Mizutani, N. (2009). A numerical wave tank using direct-forcing immersed boundary method and its application to wave force on a horizontal cylinder. JSCE, 51, 27-48.
- Liu, Y. Lia, Y.C. and Teng, B. (2007). The reflection of oblique waves by an infinite number of partially perforated caissons. Ocean Eng., 34, 1965-1976. https://doi.org/10.1016/j.oceaneng.2007.03.004
- Liu, S. and Masliyah, J.H. (1999). Non-linear flows in porous media. J. Non-Newtonian Fluid Mech., 86(1), 229-252. https://doi.org/10.1016/S0377-0257(98)00210-9
- Ohyama, T. and Nadaoka, K. (1991). Development of a numerical wave tank for analysis of non-linear and irregular wave field. Fluid Dyn. Res., 8, 231-251. https://doi.org/10.1016/0169-5983(91)90045-K
- Sakakiyama, T. and Kajima, R. (1992). Numerical simulation of nonlinear wave interacting with permeable breakwater. Proc. of 22nd Intl. Conf. on Coastal Eng., ASCE, 1517-1530.
- Smagorinsky, J. (1963). General circulation experiments with the primitive equation. Mon. Weath. Rev. 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
- Takayama, T. (1982). Theoretical properties oblique waves generated by serpent-type wave makers. Rep. the Port and Harbor Research Institute, 21(2), 3-48.
- van Gent, M.R.A. (1995). Wave interaction with permeable coastal structures. Ph.D. Thesis, Delft University The Netherlands.
- Wang, B., Otta, A.K. and Chadwick, A.J. (2007). Transmission of obliquely incident waves at low-crested breakwaters_Theoretical interpretations of experimental observations. Coastal Eng., 54, 333-344. https://doi.org/10.1016/j.coastaleng.2006.10.005
- Wang, S.K., Hsu, T.W., Weng, W.K. and Ou, S.H. (2008). A three-point method for estimating wave reflection of obliquely incident waves over a sloping bottom. Coastal Eng., 55, 125-138. https://doi.org/10.1016/j.coastaleng.2007.09.002
- Zanuttigh, B. and Lamberti, A. (2006). Experimental analysis and numerical simulations of waves and current flows around low-crested rubble-mound structures. Journal of Waterway, Port, Coastal, and Ocean Eng., ASCE, 132(1), 10-27. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:1(10)
Cited by
- Reflection and Hydraulic Characteristics inside Two-Chamber Vertical Slit Caisson in 3-D Oblique Wave Field vol.28, pp.3, 2014, https://doi.org/10.5574/KSOE.2014.28.3.227
- Effect of Multi-directional Random Waves on Characteristics of 3-D Wave Field around Permeable Submerged Breakwaters vol.26, pp.2, 2012, https://doi.org/10.5574/KSOE.2012.26.2.068
- Wave Run-up Characteristics of Ocean Wave, Current, and Kelvin Wave Interaction in the Canal vol.27, pp.4, 2013, https://doi.org/10.5574/KSOE.2013.27.4.055
- Analysis on Mechanism of Wave Attenuation under Wave-Current Interaction vol.36, pp.4, 2016, https://doi.org/10.12652/Ksce.2016.36.4.0645