• Title/Summary/Keyword: Stokes 수

Search Result 532, Processing Time 0.024 seconds

Solver for the Wavier-Stokes Equations by using Initial Guess Velocity (속도의 초기간 추정을 사용한 Navier-Stokes방정식 풀이 기법)

  • Kim, Young-Hee;Lee, Sung-Kee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.9
    • /
    • pp.445-456
    • /
    • 2005
  • We propose a fast and accurate fluid solver of the Wavier-Stokes equations for the physics-based fluid simulations. Our method utilizes the solution of the Stokes equation as an initial guess for the velocity of the nonlinear term in the Wavier-Stokes equations. By guessing the initial velocity close to the exact solution of the given nonlinear differential equations, we can develop remarkably accurate and stable fluid solver. Our solver is based on the implicit scheme of finite difference methods, that makes it work well for large time steps. Since we employ the ADI method, our solver is also fast and has a uniform computation time. The experimental results show that our solver is excellent for fluids with high Reynolds numbers such as smoke and clouds.

Critical Reynolds Number for the Occurrence of Nonlinear Flow in a Rough-walled Rock Fracture (암반단열에서 비선형유동이 발생하는 임계 레이놀즈수)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Fluid flow through rock fractures has been quantified using equations such as Stokes equations, Reynolds equation (or local cubic law), cubic law, etc. derived from the Navier-Stokes equations under the assumption that linear flow prevails. Therefore, these simplified equations are limited to linear flow regime, and cause errors in nonlinear flow regime. In this study, causal mechanism of nonlinear flow and critical Reynolds number were presented by carrying out fluid flow modeling with both the Navier-Stokes equations and the Stokes equations for a three-dimensional rough-walled rock fracture. This study showed that flow regimes changed from linear to nonlinear at the Reynolds number greater than 10. This is because the inertial forces, proportional to the square of the fluid velocity, increased enough to overwhelm the viscous forces. This tendency was also shown for the unmated (slightly sheared) rock fracture. It was found that nonlinear flow was caused by the rapid increase in the inertial forces with increasing fluid velocity, not by the growing eddies that have been ascribed to nonlinear flow.

Temperature Preconditioning for Improving Convergence Characteristics in Calculating Low Mach Number Flows, II: Navier-Stokes Equations (저속 유동 계산의 수렴성 개선을 위한 온도예조건화 II: 나비어스톡스 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1075-1081
    • /
    • 2007
  • The temperature preconditioning is applied to the Navier-Stokes equations. Also, a new concept of diffusion Mach numbers is introduced to modify the reference Mach number for the Navier-Stokes equations. Flows over a circular cylinder were calculated at different Reynolds numbers. It is shown that the temperature preconditioning improves the convergence characteristics of Navier-Stokes equations. Also, it is shown that the modified reference Mach number alleviates the convergence problems at locally low speed regions.

Effects of Cylinder Rotation on Particle Laden Flow and Particle Deposition on a Rotating Circular Cylinder (실린더의 회전이 원형 실린더 주위의 입자 부유 유동 및 입자 부착에 미치는 영향)

  • Lee, Seungwoo;Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.239-248
    • /
    • 2017
  • It is important to understand the dispersion and deposition characteristics of particles in the flow around a circular cylinder. The rotation of a cylinder is considered as a means to modify the particle deposition in this study. We numerically investigate the effects of the rotational speed of a cylinder and the particle Stokes number on particle dispersion and deposition as well as flow characteristics. Results show that the deposition efficiency of small particles (with the Stokes number smaller than 4) decreases significantly as the rotational speed increases. However, when the Stokes number is larger than 4, the deposition efficiency increases slightly with the rotational speed of the cylinder. Meanwhile, for a given rotational speed, the increase in the Stokes number leads to an increase in deposition efficiency and deposited area.

Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, II : Navier-Stokes Equations (저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 II : 나비어스톡스 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.123-130
    • /
    • 2008
  • The effects of characteristic condition number on the convergence of preconditioned Navier-Stokes equations were investigated. The two-dimensional preconditioned Navier-Stokes adopting Choi and Merkle's preconditioning and the temperature preconditioning are considered. Preconditioned Roe's FDS scheme was adopted for spatial discretization and preconditioned LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of the Navier-Stokes equations are strongly affected by the characteristic condition number. Also it is shown that the optimal characteristic condition numbers for viscous flows are larger than that in inviscid flows.

Focusing Geometry Dependence of Single Pass Raman Shifer (단인 통과 라만레이저의 집속 조건에 따른 출력 특성)

  • 고춘수
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.434-441
    • /
    • 1993
  • Focusing geometry dependence of output Stokes energy in single pass methane Raman shifter is investigated. The experimental result shows that the threshold energy decreases as confocal parameter increases. This result can be explained by gain suppression caused by Stokes - anti-Stokes coupling. In this paper, we give simple analysis for the focusing geometry dependence of Stokes - anti-Stokes coupling and present the criterion of confocal parameter to reduce the gain suppression. Focusing geometry dependence of stimulated Brillouin scattering is measured and the result is in good agreement with theoretical prediction.

  • PDF

Convergence Acceleration Methods for the Multigrid Navier-Stokes Computation (다중 격자 Wavier-Stokes 해석의 수렴성 증진 기법)

  • Kim Yoonsik;Kwon Jang Hyuk;Choi Yun Ho;Lee Seungsoo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.35-38
    • /
    • 2002
  • The convergence acceleration methods for the compressible Wavier-Stokes equations are studied ,which are multigrid method and implicit preconditioned multistage time stepping method. In this paper, the performance of implicit preconditioning methods are studied for the full-coarsening multigrid methods on the high Reynolds number compressible flow computations. The effect of numerical flux on the convergence are investigated for the inviscid and viscous calculations.

  • PDF

A POSTERIORI ERROR ESTIMATORS FOR THE STABILIZED LOW-ORDER FINITE ELEMENT DISCRETIZATION OF THE STOKES EQUATIONS BASED ON LOCAL PROBLEMS

  • KIM, KWANG-YEON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.203-214
    • /
    • 2017
  • In this paper we propose and analyze two a posteriori error estimators for the stabilized $P_1/P_1$ finite element discretization of the Stokes equations. These error estimators are computed by solving local Poisson or Stokes problems on elements of the underlying triangulation. We establish their asymptotic exactness with respect to the velocity error under certain conditions on the triangulation and the regularity of the exact solution.

Vortex Particle Turbulence for Fluid Simulation (유체 시뮬레이션의 격자 내 상세도 향상을 위한 와류 입자 혼합 기법)

  • Yoon, Jong-Chul;Hong, Jeong-Mo;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.4
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we propose an efficient technique for improving the grid based fluid simulation by sub-grid visuals. The detailed turbulency generated efficiently by Vortex Particle Method are blended with the flow fields coming from the traditional incompressible Navier-Stokes solver. The algorithm enables large- and small- scale detail to be edited separately.

  • PDF