• 제목/요약/키워드: Stochastic field

검색결과 218건 처리시간 0.022초

Development of a novel reconstruction method for two-phase flow CT with improved simulated annealing algorithm

  • Yan, Mingfei;Hu, Huasi;Hu, Guang;Liu, Bin;He, Chao;Yi, Qiang
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1304-1310
    • /
    • 2021
  • Two-phase flow, especially gas-liquid two-phase flow, has a wide application in industrial field. The diagnosis of two-phase flow parameters, which directly determine the flow and heat transfer characteristics, plays an important role in providing the design reference and ensuring the security of online operation of two-phase flow system. Computer tomography (CT) is a good way to diagnose such parameters with imaging method. This paper has proposed a novel image reconstruction method for thermal neutron CT of two-phase flow with improved simulated annealing (ISA) algorithm, which makes full use of the prior information of two-phase flow and the advantage of stochastic searching algorithm. The reconstruction results demonstrate that its reconstruction accuracy is much higher than that of the reconstruction algorithm based on weighted total difference minimization with soft-threshold filtering (WTDM-STF). The proposed method can also be applied to other types of two-phase flow CT modalities (such as X(𝛄)-ray, capacitance, resistance and ultrasound).

제어 장벽함수를 이용한 안전한 행동 영역 탐색과 제어 매개변수의 실시간 적응 (Online Adaptation of Control Parameters with Safe Exploration by Control Barrier Function)

  • 김수영;손흥선
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.76-85
    • /
    • 2022
  • One of the most fundamental challenges when designing controllers for dynamic systems is the adjustment of controller parameters. Usually the system model is used to get the initial controller, but eventually the controller parameters must be manually adjusted in the real system to achieve the best performance. To avoid this manual tuning step, data-driven methods such as machine learning were used. Recently, reinforcement learning became one alternative of this problem to be considered as an agent learns policies in large state space with trial-and-error Markov Decision Process (MDP) which is widely used in the field of robotics. However, on initial training step, as an agent tries to explore to the new state space with random action and acts directly on the controller parameters in real systems, MDP can lead the system safety-critical system failures. Therefore, the issue of 'safe exploration' became important. In this paper we meet 'safe exploration' condition with Control Barrier Function (CBF) which converts direct constraints on the state space to the implicit constraint of the control inputs. Given an initial low-performance controller, it automatically optimizes the parameters of the control law while ensuring safety by the CBF so that the agent can learn how to predict and control unknown and often stochastic environments. Simulation results on a quadrotor UAV indicate that the proposed method can safely optimize controller parameters quickly and automatically.

t-SNE에 대한 요약 (A review on the t-distributed stochastic neighbors embedding)

  • 김기풍;김충락
    • 응용통계연구
    • /
    • 제36권2호
    • /
    • pp.167-173
    • /
    • 2023
  • 본 논문에서는 고차원의 자료를 저차원으로 변환시켜 시각화하는 다양한 방법들을 소개하였다. 차원 축소는 크게 선형 방법과 비선형 방법으로 나눌 수 있는데 선형 방법으로 주성분 분석, 다차원 척도 등을 간략하게 소개하였고 비선형 방법으로 커널 주성분 분석, 자기조직도, 국소 선형 사상, Isomap, 국소 다차원 척도 등을 간략하게 소개하였으며, 가장 최근에 제안되었으며 매우 널리 사용되고 있지만 통계학 분야에는 비교적 생소한 t-SNE에 대하여 자세히 소개하였다. t-SNE를 이용한 간단한 예제를 제시하고 t-SNE의 장단점을 지적한 최근 연구 논문을 소개하고 제시된 향후 연구 과제들을 살펴보았다.

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

비정체형 2차원 다공성 매질의 대수투수계수-수두 교차공분산에 관한 연구 (A Study on Logconductivity-Head Cross Covariance in Two-Dimensional Nonstationary Porous Formations)

  • 성관제
    • 물과 미래
    • /
    • 제29권5호
    • /
    • pp.215-222
    • /
    • 1996
  • 본 논문에서는 다공성 매질의 특수율이 비정체형인 경우 대수투수계수-수두 교차공분산에 관한 식을 유도하였으며, 이 교차공분산은 수두분포로부터 특수장의 통계학적 특성을 유추하는데(inverse problem) 매우 중요한 역할을 담당한다. 비정체형 대수투수계수는 일정한 선형경향과 정체형인 미소 변동의 합으로 구성되었으며, 2차원 포화대수층에서 정상 유동문제를 추계학적으로 해석하여 수두분포를 얻었고 이로부터 교차공분산을 유도하였다. 투수계수의 상관함수가 가우스분포를 가지고 그 경향이 수두 경사와 평행이거나 직교하는 두 가지 경우에 대하여 교차공분산을 살펴 본 결과, 투수장의 경향이 주 흐름방향과 평행한 경우 흐름방향 쪽만 제외하고는 정체형임이 밝혀졌다. 또한, 흐름방향과 직교하는 쪽으로의 교차공분산은 정체형 모델 결과와 달리 영이 아님를 알 수 있었다. 따라서 지하수 유동이나 오염물질 확산문제를 다룰 경우, 투수계수장에 어떤 경향이 존재한다고 의심될 때에는 반드시 그 경향을 해석과정에 포함시켜야 한다.

  • PDF

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method

  • Roberts James C.;Asten Michael W.
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.14-18
    • /
    • 2004
  • High levels of ambient noise and safety factors often limit the use of 'active-source' seismic methods for geotechnical investigations in urban environments. As an alternative, shear-wave velocity-depth profiles can be obtained by treating the background microtremor wave field as a stochastic process, rather than adopting the traditional approach of calculating velocity based on ray path geometry from a known source. A recent field test in Melbourne demonstrates the ability of the microtremor method, using only Rayleigh waves, to resolve a velocity inversion resulting from the presence of a hard, 12 m thick basalt flow overlying 25 m of softer alluvial sediments and weathered mudstone. Normally the presence of the weaker underlying sediments would lead to an ambiguous or incorrect interpretation with conventional seismic refraction methods. However, this layer of sediments is resolved by the microtremor method, and its inclusion is required in one-dimensional layered-earth modelling in order to reproduce the Rayleigh-wave coherency spectra computed from observed seismic noise records. Nearby borehole data provided both a guide for interpretation and a confirmation of the usefulness of the passive Rayleigh-wave microtremor method. Sensitivity analyses of resolvable modelling parameters demonstrate that estimates of shear velocities and layer thicknesses are accurate to within approximately $10\%\;to\;20\%$ using the spatial autocorrelation (SPAC) technique. Improved accuracy can be obtained by constraining shear velocities and/or layer thicknesses using independent site knowledge. Although there exists potential for ambiguity due to velocity-thickness equivalence, the microtremor method has significant potential as a site investigation tool in situations where the use of traditional seismic methods is limited.

Internal Dosimetry: State of the Art and Research Needed

  • Francois Paquet
    • Journal of Radiation Protection and Research
    • /
    • 제47권4호
    • /
    • pp.181-194
    • /
    • 2022
  • Internal dosimetry is a discipline which brings together a set of knowledge, tools and procedures for calculating the dose received after incorporation of radionuclides into the body. Several steps are necessary to calculate the committed effective dose (CED) for workers or members of the public. Each step uses the best available knowledge in the field of radionuclide biokinetics, energy deposition in organs and tissues, the efficiency of radiation to cause a stochastic effect, or in the contributions of individual organs and tissues to overall detriment from radiation. In all these fields, knowledge is abundant and supported by many works initiated several decades ago. That makes the CED a very robust quantity, representing exposure for reference persons in reference situation of exposure and to be used for optimization and assessment of compliance with dose limits. However, the CED suffers from certain limitations, accepted by the International Commission on Radiological Protection (ICRP) for reasons of simplification. Some of its limitations deserve to be overcome and the ICRP is continuously working on this. Beyond the efforts to make the CED an even more reliable and precise tool, there is an increasing demand for personalized dosimetry, particularly in the medical field. To respond to this demand, currently available tools in dosimetry can be adjusted. However, this would require coupling these efforts with a better assessment of the individual risk, which would then have to consider the physiology of the persons concerned but also their lifestyle and medical history. Dosimetry and risk assessment are closely linked and can only be developed in parallel. This paper presents the state of the art of internal dosimetry knowledge and the limitations to be overcome both to make the CED more precise and to develop other dosimetric quantities, which would make it possible to better approximate the individual dose.

시간영역 광전자파 분석기 (Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 오염물질 운송개념 (Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Transport Concept)

  • 김동주
    • 자원환경지질
    • /
    • 제29권6호
    • /
    • pp.713-724
    • /
    • 1996
  • 현장에서의 주요 운송 메카니즘을 연구하기 위하여 시간별 잔존수 농도분포곡선 자료를 이용하였다. 운송개념을 대표하는 모델로서 2개의 상반된 가설에 근기한 모델, 즉 CDE와 CLT모델을 사용하였으며 파라미터 추정을 위하여 깊이별 평균농도자료에 최적화기법을 적용하였으며 잔존수 농도의 도달시간을 나타내는 확율밀도함수를 이용하여 모멘트해석도 시행되었다. 모멘트 해석결과 잔존수농도의 1차 및 2차 시간 모멘트는 침출수농도의 것들보다 크게 나타났다. 또한 시간 모멘트를 이용하여 오염물질 운송시간의 변이도와 확산 파라미터도 도출되었다. 변이도 및 확산계수와 운송거리간의 상관관계는 침출수농도 및 잔존수농도에 대해서 동일하게 나타났다. 이러한 관계를 이용하여 2가지 모델을 검정하였으나 운송거리에 따른 운송파라미터의 불규칙한 변화로 확정적 결론을 얻을 수 없었다. 따라서 첫 번째 깊이에서 얻은 파라미터를 이용하여 다른 깊이에서의 오염물질 운송 방식을 예측하여 실측자료와 비교하여 각 모델을 검정하였다. 그 결과 CLT 모델이 CDE 모델보다 현장실측자료에 근접하였다. 이는 오염물질이 이동함에 따라 완전한 혼합이 발생하는 것이 아니라 상관흐름 즉, "오염물질이 각 층을 통과할 때 빠른 물질은 빠르게 느린 물질은 지속적으로 느리게 움직인다"는 사실을 뒷받침한다고 볼 수 있다. 특히 첨두농도에 대한 CDE 모델의 과대예측은 오염물질 확산의 과소평가에 기인하는 것으로 나타났다.

  • PDF

신경망의 결정론적 이완에 의한 자기공명영상 분류 (Classification of Magnetic Resonance Imagery Using Deterministic Relaxation of Neural Network)

  • 전준철;민경필;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • 제6권2호
    • /
    • pp.137-146
    • /
    • 2002
  • 목적: 본 논문에서는 신경망을 이용한 자기공명영상의 분류에 있어 결정론적 이완 방법(deterministic relaxation)과 응집 군집화(agglomerative clustering) 방법에 의한 개선된 영상 분류방법을 제시한다. 제안된 방법은 신경망을 이용한 영상의 분류시 지역적 최소치로의 수렴문제와 입력 패턴의 증대로 인하여 수렴 속가 늦어지는 문제를 해결한다. 대상 및 방법: 신경망을 이용한 영상의 분류는 지역적 계산과 병렬 계산이 가능한 특성을 갖고 있어 기존의 통계적 방법을 대신하는 방법으로 주목을 받고 있다. 그러나 일반적으로 신경망에 의한 분류알고리즘이 지닌 문제점의 하나는 에너지함수가 항상 전역적 최소치로 수렴하지 않고 지역적 최소치로도 수렴할 수 있다는 점이고, 또 다른 문제점은 반복수렴을 수행하는 에너지함수의 수렴속도가 너무 늦다는 점이다. 따라서 지역적 최소치로의 수렴을 방지하고 전역적 최소치로의 수렴속도를 가속화시키기 위하여 본 논문에서는 결정적 이완 알고리즘의 하나인 MFA(Mean Field Annealing) 방법을 적용하여 지역적 최소치로의 수렴문제를 해결하는 방법을 제시한다. MFA는 모의 애닐링의 통계적 성질을 변수의 평균값에 적용하는 결정론적인 수정 법칙들로 대신하고, 이러한 평균값을 최소화함으로서 수렴속도를 개선한 방법이다 아울러 신경망이 갖고 있는 문제점인 과다한 클래스 패턴의 생성에 따른 처리속도 지연의 문제점을 해결하기 위하여 응집 군집화 알고리즘을 이용하여 영상을 구성하는 군집을 결정하여 신경망에 입력되는 값을 초기화하여 영상패턴이 증가되는 것을 제한하였다. 결과: 본 논문에서 제시된 응집 군집화 방법 및 결정론적 이완 방법은 신경망에 의한 자기공명영상의 분류 시 발생할 수 있는 지역적 최적 치로의 수렴 문제를 해결하여 전역적 최적화로 신속히 수렴함을 알 수 있었다. 결론: 본 논문에서는 클러스터의 분석과 결정론적 이완 방법에 의하여 신경망에 의한 자기공명영상의 분류결과를 향상시키기 위한 새로운 방법을 소개하였으며 실험결과를 통하여 그러한 사실을 확인할 수 있었다.

  • PDF