Two-phase flow, especially gas-liquid two-phase flow, has a wide application in industrial field. The diagnosis of two-phase flow parameters, which directly determine the flow and heat transfer characteristics, plays an important role in providing the design reference and ensuring the security of online operation of two-phase flow system. Computer tomography (CT) is a good way to diagnose such parameters with imaging method. This paper has proposed a novel image reconstruction method for thermal neutron CT of two-phase flow with improved simulated annealing (ISA) algorithm, which makes full use of the prior information of two-phase flow and the advantage of stochastic searching algorithm. The reconstruction results demonstrate that its reconstruction accuracy is much higher than that of the reconstruction algorithm based on weighted total difference minimization with soft-threshold filtering (WTDM-STF). The proposed method can also be applied to other types of two-phase flow CT modalities (such as X(𝛄)-ray, capacitance, resistance and ultrasound).
One of the most fundamental challenges when designing controllers for dynamic systems is the adjustment of controller parameters. Usually the system model is used to get the initial controller, but eventually the controller parameters must be manually adjusted in the real system to achieve the best performance. To avoid this manual tuning step, data-driven methods such as machine learning were used. Recently, reinforcement learning became one alternative of this problem to be considered as an agent learns policies in large state space with trial-and-error Markov Decision Process (MDP) which is widely used in the field of robotics. However, on initial training step, as an agent tries to explore to the new state space with random action and acts directly on the controller parameters in real systems, MDP can lead the system safety-critical system failures. Therefore, the issue of 'safe exploration' became important. In this paper we meet 'safe exploration' condition with Control Barrier Function (CBF) which converts direct constraints on the state space to the implicit constraint of the control inputs. Given an initial low-performance controller, it automatically optimizes the parameters of the control law while ensuring safety by the CBF so that the agent can learn how to predict and control unknown and often stochastic environments. Simulation results on a quadrotor UAV indicate that the proposed method can safely optimize controller parameters quickly and automatically.
본 논문에서는 고차원의 자료를 저차원으로 변환시켜 시각화하는 다양한 방법들을 소개하였다. 차원 축소는 크게 선형 방법과 비선형 방법으로 나눌 수 있는데 선형 방법으로 주성분 분석, 다차원 척도 등을 간략하게 소개하였고 비선형 방법으로 커널 주성분 분석, 자기조직도, 국소 선형 사상, Isomap, 국소 다차원 척도 등을 간략하게 소개하였으며, 가장 최근에 제안되었으며 매우 널리 사용되고 있지만 통계학 분야에는 비교적 생소한 t-SNE에 대하여 자세히 소개하였다. t-SNE를 이용한 간단한 예제를 제시하고 t-SNE의 장단점을 지적한 최근 연구 논문을 소개하고 제시된 향후 연구 과제들을 살펴보았다.
The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.
본 논문에서는 다공성 매질의 특수율이 비정체형인 경우 대수투수계수-수두 교차공분산에 관한 식을 유도하였으며, 이 교차공분산은 수두분포로부터 특수장의 통계학적 특성을 유추하는데(inverse problem) 매우 중요한 역할을 담당한다. 비정체형 대수투수계수는 일정한 선형경향과 정체형인 미소 변동의 합으로 구성되었으며, 2차원 포화대수층에서 정상 유동문제를 추계학적으로 해석하여 수두분포를 얻었고 이로부터 교차공분산을 유도하였다. 투수계수의 상관함수가 가우스분포를 가지고 그 경향이 수두 경사와 평행이거나 직교하는 두 가지 경우에 대하여 교차공분산을 살펴 본 결과, 투수장의 경향이 주 흐름방향과 평행한 경우 흐름방향 쪽만 제외하고는 정체형임이 밝혀졌다. 또한, 흐름방향과 직교하는 쪽으로의 교차공분산은 정체형 모델 결과와 달리 영이 아님를 알 수 있었다. 따라서 지하수 유동이나 오염물질 확산문제를 다룰 경우, 투수계수장에 어떤 경향이 존재한다고 의심될 때에는 반드시 그 경향을 해석과정에 포함시켜야 한다.
The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.
High levels of ambient noise and safety factors often limit the use of 'active-source' seismic methods for geotechnical investigations in urban environments. As an alternative, shear-wave velocity-depth profiles can be obtained by treating the background microtremor wave field as a stochastic process, rather than adopting the traditional approach of calculating velocity based on ray path geometry from a known source. A recent field test in Melbourne demonstrates the ability of the microtremor method, using only Rayleigh waves, to resolve a velocity inversion resulting from the presence of a hard, 12 m thick basalt flow overlying 25 m of softer alluvial sediments and weathered mudstone. Normally the presence of the weaker underlying sediments would lead to an ambiguous or incorrect interpretation with conventional seismic refraction methods. However, this layer of sediments is resolved by the microtremor method, and its inclusion is required in one-dimensional layered-earth modelling in order to reproduce the Rayleigh-wave coherency spectra computed from observed seismic noise records. Nearby borehole data provided both a guide for interpretation and a confirmation of the usefulness of the passive Rayleigh-wave microtremor method. Sensitivity analyses of resolvable modelling parameters demonstrate that estimates of shear velocities and layer thicknesses are accurate to within approximately $10\%\;to\;20\%$ using the spatial autocorrelation (SPAC) technique. Improved accuracy can be obtained by constraining shear velocities and/or layer thicknesses using independent site knowledge. Although there exists potential for ambiguity due to velocity-thickness equivalence, the microtremor method has significant potential as a site investigation tool in situations where the use of traditional seismic methods is limited.
Internal dosimetry is a discipline which brings together a set of knowledge, tools and procedures for calculating the dose received after incorporation of radionuclides into the body. Several steps are necessary to calculate the committed effective dose (CED) for workers or members of the public. Each step uses the best available knowledge in the field of radionuclide biokinetics, energy deposition in organs and tissues, the efficiency of radiation to cause a stochastic effect, or in the contributions of individual organs and tissues to overall detriment from radiation. In all these fields, knowledge is abundant and supported by many works initiated several decades ago. That makes the CED a very robust quantity, representing exposure for reference persons in reference situation of exposure and to be used for optimization and assessment of compliance with dose limits. However, the CED suffers from certain limitations, accepted by the International Commission on Radiological Protection (ICRP) for reasons of simplification. Some of its limitations deserve to be overcome and the ICRP is continuously working on this. Beyond the efforts to make the CED an even more reliable and precise tool, there is an increasing demand for personalized dosimetry, particularly in the medical field. To respond to this demand, currently available tools in dosimetry can be adjusted. However, this would require coupling these efforts with a better assessment of the individual risk, which would then have to consider the physiology of the persons concerned but also their lifestyle and medical history. Dosimetry and risk assessment are closely linked and can only be developed in parallel. This paper presents the state of the art of internal dosimetry knowledge and the limitations to be overcome both to make the CED more precise and to develop other dosimetric quantities, which would make it possible to better approximate the individual dose.
현장에서의 주요 운송 메카니즘을 연구하기 위하여 시간별 잔존수 농도분포곡선 자료를 이용하였다. 운송개념을 대표하는 모델로서 2개의 상반된 가설에 근기한 모델, 즉 CDE와 CLT모델을 사용하였으며 파라미터 추정을 위하여 깊이별 평균농도자료에 최적화기법을 적용하였으며 잔존수 농도의 도달시간을 나타내는 확율밀도함수를 이용하여 모멘트해석도 시행되었다. 모멘트 해석결과 잔존수농도의 1차 및 2차 시간 모멘트는 침출수농도의 것들보다 크게 나타났다. 또한 시간 모멘트를 이용하여 오염물질 운송시간의 변이도와 확산 파라미터도 도출되었다. 변이도 및 확산계수와 운송거리간의 상관관계는 침출수농도 및 잔존수농도에 대해서 동일하게 나타났다. 이러한 관계를 이용하여 2가지 모델을 검정하였으나 운송거리에 따른 운송파라미터의 불규칙한 변화로 확정적 결론을 얻을 수 없었다. 따라서 첫 번째 깊이에서 얻은 파라미터를 이용하여 다른 깊이에서의 오염물질 운송 방식을 예측하여 실측자료와 비교하여 각 모델을 검정하였다. 그 결과 CLT 모델이 CDE 모델보다 현장실측자료에 근접하였다. 이는 오염물질이 이동함에 따라 완전한 혼합이 발생하는 것이 아니라 상관흐름 즉, "오염물질이 각 층을 통과할 때 빠른 물질은 빠르게 느린 물질은 지속적으로 느리게 움직인다"는 사실을 뒷받침한다고 볼 수 있다. 특히 첨두농도에 대한 CDE 모델의 과대예측은 오염물질 확산의 과소평가에 기인하는 것으로 나타났다.
목적: 본 논문에서는 신경망을 이용한 자기공명영상의 분류에 있어 결정론적 이완 방법(deterministic relaxation)과 응집 군집화(agglomerative clustering) 방법에 의한 개선된 영상 분류방법을 제시한다. 제안된 방법은 신경망을 이용한 영상의 분류시 지역적 최소치로의 수렴문제와 입력 패턴의 증대로 인하여 수렴 속가 늦어지는 문제를 해결한다. 대상 및 방법: 신경망을 이용한 영상의 분류는 지역적 계산과 병렬 계산이 가능한 특성을 갖고 있어 기존의 통계적 방법을 대신하는 방법으로 주목을 받고 있다. 그러나 일반적으로 신경망에 의한 분류알고리즘이 지닌 문제점의 하나는 에너지함수가 항상 전역적 최소치로 수렴하지 않고 지역적 최소치로도 수렴할 수 있다는 점이고, 또 다른 문제점은 반복수렴을 수행하는 에너지함수의 수렴속도가 너무 늦다는 점이다. 따라서 지역적 최소치로의 수렴을 방지하고 전역적 최소치로의 수렴속도를 가속화시키기 위하여 본 논문에서는 결정적 이완 알고리즘의 하나인 MFA(Mean Field Annealing) 방법을 적용하여 지역적 최소치로의 수렴문제를 해결하는 방법을 제시한다. MFA는 모의 애닐링의 통계적 성질을 변수의 평균값에 적용하는 결정론적인 수정 법칙들로 대신하고, 이러한 평균값을 최소화함으로서 수렴속도를 개선한 방법이다 아울러 신경망이 갖고 있는 문제점인 과다한 클래스 패턴의 생성에 따른 처리속도 지연의 문제점을 해결하기 위하여 응집 군집화 알고리즘을 이용하여 영상을 구성하는 군집을 결정하여 신경망에 입력되는 값을 초기화하여 영상패턴이 증가되는 것을 제한하였다. 결과: 본 논문에서 제시된 응집 군집화 방법 및 결정론적 이완 방법은 신경망에 의한 자기공명영상의 분류 시 발생할 수 있는 지역적 최적 치로의 수렴 문제를 해결하여 전역적 최적화로 신속히 수렴함을 알 수 있었다. 결론: 본 논문에서는 클러스터의 분석과 결정론적 이완 방법에 의하여 신경망에 의한 자기공명영상의 분류결과를 향상시키기 위한 새로운 방법을 소개하였으며 실험결과를 통하여 그러한 사실을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.