• Title/Summary/Keyword: Stochastic equation

Search Result 319, Processing Time 0.02 seconds

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF

PERIODIC SOLUTIONS OF STOCHASTIC DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS TO LOGISTIC EQUATION AND NEURAL NETWORKS

  • Li, Dingshi;Xu, Daoyi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1165-1181
    • /
    • 2013
  • In this paper, we consider a class of periodic It$\hat{o}$ stochastic delay differential equations by using the properties of periodic Markov processes, and some sufficient conditions for the existence of periodic solution of the delay equations are given. These existence theorems improve the results obtained by It$\hat{o}$ et al. [6], Bainov et al. [1] and Xu et al. [15]. As applications, we study the existence of periodic solution of periodic stochastic logistic equation and periodic stochastic neural networks with infinite delays, respectively. The theorem for the existence of periodic solution of periodic stochastic logistic equation improve the result obtained by Jiang et al. [7].

STOCHASTIC DIFFERENTIAL EQUATION FOR WHITE NOISE FUNCTIONALS

  • Ji, Un Cig
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.337-346
    • /
    • 2016
  • Within white noise approach, we study the existence and uniqueness of the solution of an initial value problem for generalized white noise functionals, and then as a corollary we discuss the linear stochastic differential equation associated with a convolution of white noise functionals.

ON STOCHASTIC EVOLUTION EQUATIONS WITH STATE-DEPENDENT DIFFUSION TERMS

  • Kim, Jai-Heui;Song, Jung-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1019-1028
    • /
    • 1997
  • The integral solution for a deterministic evolution equation was introduced by Benilan. Similarly, in this paper, we define the integral solution for a stochastic evolution equation with a state-dependent diffusion term and prove that there exists a unique integral solution of the stochastic evolution euation under some conditions for the coefficients. Moreover we prove that this solution is a unique strong solution.

  • PDF

THE APPLICATION OF STOCHASTIC DIFFERENTIAL EQUATIONS TO POPULATION GENETIC MODEL

  • Choi, Won;Choi, Dug-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.677-683
    • /
    • 2003
  • In multi-allelic model $X\;=\;(x_1,\;x_2,\;\cdots\;,\;x_d),\;M_f(t)\;=\;f(p(t))\;-\;{\int_0}^t\;Lf(p(t))ds$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we examine the stochastic differential equation for model X and find the properties using stochastic differential equation.

A FINANCIAL MARKET OF A STOCHASTIC DELAY EQUATION

  • Lee, Ki-Ahm;Lee, Kiseop;Park, Sang-Hyeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1129-1141
    • /
    • 2019
  • We propose a stochastic delay financial model which describes influences driven by historical events. The underlying is modeled by stochastic delay differential equation (SDDE), and the delay effect is modeled by a stopping time in coefficient functions. While this model makes good economical sense, it is difficult to mathematically deal with this. Therefore, we circumvent this model with similar delay effects but mathematically more tractable, which is by the backward time integration. We derive the option pricing equation and provide the option price and the perfect hedging portfolio.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.

Control of an stochastic nonlinear system by the method of dynamic programming

  • Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.156-161
    • /
    • 1994
  • In this paper, we consider an optimal control problem of a nonlinear stochastic system. Dynamic programming approach is employed for the formulation of a stochastic optimal control problem. As an optimality condition, dynamic programming equation so called the Bellman equation is obtained, which seldom yields an analytical solution, even very difficult to solve numerically. We obtain the numerical solution of the Bellman equation using an algorithm based on the finite difference approximation and the contraction mapping method. Optimal controls are constructed through the solution process of the Bellman equation. We also construct a test case in order to investigate the actual performance of the algorithm.

  • PDF

STOCHASTIC MEHLER KERNELS VIA OSCILLATORY PATH INTEGRALS

  • Truman, Aubrey;Zastawniak, Tomasz
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.469-483
    • /
    • 2001
  • The configuration space and phase space oscillatory path integrals are computed in the case of the stochastic Schrodinger equation for the harmonic oscillator with a stochastic term of the form (K$\psi$(sub)t)(x) o dW(sub)t, where K is either the position operator or the momentum operator, and W(sub)t is the Wiener process. In this way formulae are derived for the stochastic analogues of the Mehler kernel.

  • PDF