• 제목/요약/키워드: Stochastic Lead Time

검색결과 49건 처리시간 0.029초

물류센터의 경제성 평가를 위한 수리모델 및 고려요소에 관한 제언 (The Value of a Warehouse : Whether to have a warehouse or not)

  • 김종대;강경식
    • 산업경영시스템학회지
    • /
    • 제18권34호
    • /
    • pp.193-204
    • /
    • 1995
  • Many studies show that the value of the warehouse is good. However, studies explicitly mention the tradeoff between costs of operating the warehouse and benefits from the warehouse. Also, it is important to know when the benefits overcome the costs. We study a one-warehouse/N-retailer(s,Q) distribution system with stochastic lead times in order to answer two questions: "What are the optimal policies of the system that minimizes total system costs\ulcorner" and given the optimal policies, "Is the value of the warehouse always good\ulcorner" We use an analytical model for answering the questions. We find that the optimal policies are different from those with deterministic lead times. In fact it is reverse. We alse find the existence of the breakeven point beyond which the benefits starts overcomming the costs. And, we show that one of the breakeven points is the mean ratio of a supplier's lead time to transportation lead time between the warehouse and the retailer. Finally, we show that the breakeven point is sensitive to the ratio of holding costs of the warehouse and the retailer and it is also sensitive to the unit backorder costs at the retailer.sts at the retailer.

  • PDF

ANALYSIS OF TWO COMMODITY MARKOVIAN INVENTORY SYSTEM WITH LEAD TIME

  • Anbazhagan, N.;Arivarignan, G.
    • Journal of applied mathematics & informatics
    • /
    • 제8권2호
    • /
    • pp.519-530
    • /
    • 2001
  • A two commodity continuous review inventory system with independent Poisson processes for the demands is considered in this paper. The maximum inventory level for the i-th commodity fixed as $S_i$(i = 1,2). The net inventory level at time t for the i-th commodity is denoted by $I_i(t),\;i\;=\;1,2$. If the total net inventory level $I(t)\;=\;I_1(t)+I_2(t)$ drops to a prefixed level s $[{\leq}\;\frac{({S_1}-2}{2}\;or\;\frac{({S_2}-2}{2}]$, an order will be placed for $(S_{i}-s)$ units of i-th commodity(i=1,2). The probability distribution for inventory level and mean reorders and shortage rates in the steady state are computed. Numerical illustrations of the results are also provided.

로트크기에 비례하는 리드타임과 공간 제약을 고려한 재고관리 정책 (An Inventory Problem with Lead Time Proportional to Lot Size and Space Constraint)

  • 이동주
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.109-116
    • /
    • 2015
  • This paper is concerned with the single vendor single buyer integrated production inventory problem. To make this problem more practical, space restriction and lead time proportional to lot size are considered. Since the space for the inventory is limited in most practical inventory system, the space restriction for the inventory of a vendor and a buyer is considered. As product's quantity to be manufactured by the vendor is increased, the lead time for the order is usually increased. Therefore, lead time for the product is proportional to the order quantity by the buyer. Demand is assumed to be stochastic and the continuous review inventory policy is used by the buyer. If the buyer places an order, then the vendor will start to manufacture products and the products will be transferred to the buyer with equal shipments many times. The mathematical formulation with space restriction for the inventory of a vendor and a buyer is suggested in this paper. This problem is constrained nonlinear integer programming problem. Order quantity, reorder points for the buyer, and the number of shipments are required to be determined. A Lagrangian relaxation approach, a popular solution method for constrained problem, is developed to find lower bound of this problem. Since a Lagrangian relaxation approach cannot guarantee the feasible solution, the solution method based on the Lagrangian relaxation approach is proposed to provide with a good feasible solution. Total costs by the proposed method are pretty close to those by the Lagrangian relaxation approach. Sensitivity analysis for space restriction for the vendor and the buyer is done to figure out the relationships between parameters.

Bayesian Multiple Change-Point Estimation and Segmentation

  • Kim, Jaehee;Cheon, Sooyoung
    • Communications for Statistical Applications and Methods
    • /
    • 제20권6호
    • /
    • pp.439-454
    • /
    • 2013
  • This study presents a Bayesian multiple change-point detection approach to segment and classify the observations that no longer come from an initial population after a certain time. Inferences are based on the multiple change-points in a sequence of random variables where the probability distribution changes. Bayesian multiple change-point estimation is classifies each observation into a segment. We use a truncated Poisson distribution for the number of change-points and conjugate prior for the exponential family distributions. The Bayesian method can lead the unsupervised classification of discrete, continuous variables and multivariate vectors based on latent class models; therefore, the solution for change-points corresponds to the stochastic partitions of observed data. We demonstrate segmentation with real data.

수요가 재생 도착과정을 따르는 (s, S) 재고 시스템에서 시뮬레이션 민감도 분석을 이용한 최적 전략 (Optimal Policy for (s, S) Inventory System Characterized by Renewal Arrival Process of Demand through Simulation Sensitivity Analysis)

  • 권치명
    • 한국시뮬레이션학회논문지
    • /
    • 제12권3호
    • /
    • pp.31-40
    • /
    • 2003
  • This paper studies an optimal policy for a certain class of (s, S) inventory control systems, where the demands are characterized by the renewal arrival process. To minimize the average cost over a simulation period, we apply a stochastic optimization algorithm which uses the gradients of parameters, s and S. We obtain the gradients of objective function with respect to ordering amount S and reorder point s via a combined perturbation method. This method uses the infinitesimal perturbation analysis and the smoothed perturbation analysis alternatively according to occurrences of ordering event changes. The optimal estimates of s and S from our simulation results are quite accurate. We consider that this may be due to the estimated gradients of little noise from the regenerative system simulation, and their effect on search procedure when we apply the stochastic optimization algorithm. The directions for future study stemming from this research pertain to extension to the more general inventory system with regard to demand distribution, backlogging policy, lead time, and inter-arrival times of demands. Another direction involves the efficiency of stochastic optimization algorithm related to searching procedure for an improving point of (s, S).

  • PDF

Structural Aspects in the Theory of Random Walk

  • Heyer, H.
    • Journal of the Korean Statistical Society
    • /
    • 제11권2호
    • /
    • pp.118-130
    • /
    • 1982
  • Random walks as specia Markov stochastic processes have received particular attention in recent years. Not only the applicability of the theory already developed but also its extension within the frame work of probability measures on algebraic-topological structures such as semigroups, groups and linear spaces became a new challenge for research work in the field. At the same time new insights into classical problems were obtained which in various cases lead to a more efficient presentation of the subject. Consequently the teaching of random walks at all levels should profit from the recent development.

  • PDF

전이함수잡음모형에 의한 공주지점의 용존산소 예측 (Forecasting of Dissolved Oxygen at Kongju Station using a Transfer Function Noise Model)

  • 류병로;조정석;한양수
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.349-354
    • /
    • 1999
  • The transfer function was introduced to establish the prediction method for the DO concentration at the intaking point of Kongju Water Works System. In the mose cases we analyze a single time series without explicitly using information contained in the related time series. In many forecasting situations, other events will systematically influence the series to be forecasted(the dependent variables), and therefore, there is need to go beyond a univariate forecasting model. Thus, we must bulid a forecasting model that incorporates more than one time series and introduces explicitly the dynamic characteristics of the system. Such a model is called a multiple time series model or transfer function model. The purpose of this study is to develop the stochastic stream water quality model for the intaking station of Kongju city waterworks in Keum river system. The performance of the multiplicative ARIMA model and the transfer function noise model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the transfer function noise model lead to the improved accuracy.

  • PDF

Robust Design Method for Complex Stochastic Inventory Model

  • Hwang, In-Keuk;Park, Dong-Jin
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 1999년도 춘계공동학술대회:정보화시대의 지식경영
    • /
    • pp.426-426
    • /
    • 1999
  • ;There are many sources of uncertainty in a typical production and inventory system. There is uncertainty as to how many items customers will demand during the next day, week, month, or year. There is uncertainty about delivery times of the product. Uncertainty exacts a toll from management in a variety of ways. A spurt in a demand or a delay in production may lead to stockouts, with the potential for lost revenue and customer dissatisfaction. Firms typically hold inventory to provide protection against uncertainty. A cushion of inventory on hand allows management to face unexpected demands or delays in delivery with a reduced chance of incurring a stockout. The proposed strategies are used for the design of a probabilistic inventory system. In the traditional approach to the design of an inventory system, the goal is to find the best setting of various inventory control policy parameters such as the re-order level, review period, order quantity, etc. which would minimize the total inventory cost. The goals of the analysis need to be defined, so that robustness becomes an important design criterion. Moreover, one has to conceptualize and identify appropriate noise variables. There are two main goals for the inventory policy design. One is to minimize the average inventory cost and the stockouts. The other is to the variability for the average inventory cost and the stockouts The total average inventory cost is the sum of three components: the ordering cost, the holding cost, and the shortage costs. The shortage costs include the cost of the lost sales, cost of loss of goodwill, cost of customer dissatisfaction, etc. The noise factors for this design problem are identified to be: the mean demand rate and the mean lead time. Both the demand and the lead time are assumed to be normal random variables. Thus robustness for this inventory system is interpreted as insensitivity of the average inventory cost and the stockout to uncontrollable fluctuations in the mean demand rate and mean lead time. To make this inventory system for robustness, the concept of utility theory will be used. Utility theory is an analytical method for making a decision concerning an action to take, given a set of multiple criteria upon which the decision is to be based. Utility theory is appropriate for design having different scale such as demand rate and lead time since utility theory represents different scale across decision making attributes with zero to one ranks, higher preference modeled with a higher rank. Using utility theory, three design strategies, such as distance strategy, response strategy, and priority-based strategy. for the robust inventory system will be developed.loped.

  • PDF

Flexible operation and maintenance optimization of aging cyber-physical energy systems by deep reinforcement learning

  • Zhaojun Hao;Francesco Di Maio;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1472-1479
    • /
    • 2024
  • Cyber-Physical Energy Systems (CPESs) integrate cyber and hardware components to ensure a reliable and safe physical power production and supply. Renewable Energy Sources (RESs) add uncertainty to energy demand that can be dealt with flexible operation (e.g., load-following) of CPES; at the same time, scenarios that could result in severe consequences due to both component stochastic failures and aging of the cyber system of CPES (commonly overlooked) must be accounted for Operation & Maintenance (O&M) planning. In this paper, we make use of Deep Reinforcement Learning (DRL) to search for the optimal O&M strategy that, not only considers the actual system hardware components health conditions and their Remaining Useful Life (RUL), but also the possible accident scenarios caused by the failures and the aging of the hardware and the cyber components, respectively. The novelty of the work lies in embedding the cyber aging model into the CPES model of production planning and failure process; this model is used to help the RL agent, trained with Proximal Policy Optimization (PPO) and Imitation Learning (IL), finding the proper rejuvenation timing for the cyber system accounting for the uncertainty of the cyber system aging process. An application is provided, with regards to the Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED).

Role of Mass Inflow and Supernova Feedback on Nuclear Ring Star Formation

  • Moon, Sanghyuk;Kim, Woong-Tae;Kim, Chang-Goo;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.37.1-37.1
    • /
    • 2021
  • Observations suggest the star formation in nuclear rings of barred galaxies proceeds episodically in time and sometimes asymmetrically in space. Existing theories and numerical simulations suggest that the episodic star formation is perhaps due to either supernova feedback combined with fluid instabilities or time-varying mass inflow rate. However, it has been challenging to discern what dominates in shaping the star formation history because the effects of the inflow and feedback are blended in global simulations of nuclear rings. To understand their effects separately, we construct semi-global models of nuclear rings, which treat the mass inflow rate as a model parameter. By running simulations with the inflow rates kept constant or oscillating in time, we find that the star formation rate (SFR) of the rings varies coherently with the inflow rate, while the feedback is responsible only for stochastic fluctuations of the SFR within a factor of two. The feedback instead plays an important role in maintaining the vertical dynamical equilibrium and setting the depletion time. While the asymmetry in the inflow does not necessarily lead to the asymmetry in the star formation, we find that the rings undergo a transient period of lopsided star formation when the inflow rate of only one dust lane is suddenly increased.

  • PDF