• Title/Summary/Keyword: Steric repulsion

Search Result 27, Processing Time 0.025 seconds

Rejection rate and mechanisms of drugs in drinking water by nanofiltration technology

  • Ge, Sijie;Feng, Li;Zhang, Liqiu;Xu, Qiang;Yang, Yifei;Wang, Ziyuan;Kim, Ki-Hyun
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.329-338
    • /
    • 2017
  • Nanofiltration (NF) technology is a membrane-based separation process, which has been pervasively used as the high-effective technology for drinking water treatment. In this study, a kind of composite polyamide NF thin film is selected to investigate the removal efficiencies and mechanisms of 14 trace drugs, which are commonly and frequently detected in the drinking water. The results show that the removal efficiencies of most drugs are quite high, indicating the NF is an effective technology to improve the quality of drinking water. The removal efficiencies of carbamazepine, acetaminophen, estradiol, antipyrine and isopropyl-antipyrine in ultrapure water are $78.8{\pm}0.8%$, $16.4{\pm}0.5%$, $65.4{\pm}1.8%$, $71.1{\pm}1.5%$ and $89.8{\pm}0.38%$, respectively. Their rejection rates increase with the increasing of their three-dimensional sizes, which indicates that the steric exclusion plays a significant role in removal of these five drugs. The adsorption of estradiol with the strongest hydrophobicity has been studied, which indicates that adsorption is not negligible in terms of removing this kind of hydrophobic neutral drugs by NF technology. The removal efficiencies of indomethacin, diclofenac, naproxen, ketoprofen, ibuprofen, clofibric acid, sulfamethoxazole, amoxicillin and bezafibrate in ultrapure water are $81{\pm}0.3%$, $86.3{\pm}0.5%$, $85.7{\pm}0.4%$, $93.3{\pm}0.3%$, $86.6{\pm}2.5%$, $90.6{\pm}0.4%$, $59.7{\pm}1.7%$, $80.3{\pm}1.4%$ and $80{\pm}0.5%$, respectively. For these nine drugs, their rejection rates are better than the above five drugs because they are negatively charged in ultrapure water. Meanwhile, the membrane surface presents the negative charge. Therefore, both electrostatic repulsion and steric exclusion are indispensable in removing these negatively charged drugs. This study provides helpful and scientific support of a highly effective water treatment method for removing drugs pollutants from drinking water.

Electronic Properties and Conformation Analysis of π-Conjugated Distyryl Benzene Derivaties

  • Kim, Cheol-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.330-336
    • /
    • 2002
  • A quantum-chemical investigation on the conformations and electronic properties of bis[2-{2-methoxy-4,6-di(t-butyl)phenyl}ethenyl]benzenes (MBPBs) as building block for ${\pi}$-conjugate polymer are performed in order to display the effects of t-butyl and methoxy group substitution and of kink(ortho and meta) linkage. The conjugation length of the polymers can be controlled by substituents and kink linkages of backbone. Structures for the molecules, o-, m-, and p-MBPBs as well as unsubstituted o-, m-, and p-DSBs were fully optimized by using semiempirical AM1, PM3 methods, and ab initio HF method with 3-21G(d) basis set. The potential energy curves with respect to the change of single torsion angle are obtained by using semiempirical methods and ab initio HF/3-21G(d) basis set. The curves are similar shape in the molecules with respect to the position of vinylene groups. It is shown that the conformations of the molecules are compromised between the steric repulsion interaction and the degree of the conjugation. Electronic properties of the molecules were obtained by applying the optimized structures and geometries to the ZINDO/S method. ZINDO/S analysis performed on the geometries obtained by AM1 method and HF/3-21G(d) level is reported. The absorption wavelength on the geometries obtained by AM1 method is much longer than that by HF/3-21G(d) level. The absorption wavelength of MBPBs are red shifted with comparison to that of corresponding DSBs in the same torsion angle because of electron donating substituents. The absorption wavelength of isomers with kink(orth and meta) linkage is shorter than that of para linkage.

Disulfide Bond Bridged Divalent Antibody-Toxin, $(Fab-PE38fl)_2$ with the Toxin PE38 Fused to the Light Chain

  • Won, Jae-Seon;Choe, Mu-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1475-1481
    • /
    • 2008
  • B3 antibody specifically binds the $Lewis^Y$-related carbohydrate antigen of many carcinomas, and it is used as a model antibody in this study. In a previous study, the Fab fragment of the antibody was fused to a 38 kDa truncated form of Pseudomonas exotoxin A, PE38, to make Fab-PE38, where PE38 is fused to the Fd fragment of the Fab domain. This parent monomer molecule, Fab-PE38, had no cysteine in the hinge region, and it could not make a disulfide bond to form a disulfide bond bridged homodimer. In this study, we constructed three different kinds of divalent Fab-toxin fusion homodimers where the toxin is fused to the light chain of Fab, $(Fab-PE38fl)_2$. In addition to the PE38 toxin fused to the light chain, these three molecules have different hinge sequences hi, h2, and h3 making Fabh1-, Fabh2-, and Fabh3-PE38fl monomers, respectively. These hinges contain only one cysteine on different positions of the hinge sequence. The disulfide bond between the hinge region of two monomers forms homodimers $(Fabh1-PE38fl)_2$, $(Fabh2-PE38fl)_2$, and $(Fabh3-PE38fl)_2$. The refolding yields of these dimers were 5-16-fold higher than a previously constructed dimer where the PE38 was fused to the Fd fragment $(Fabh2-PE38)_2$ [8]. Our data suggest that the steric repulsion between the two PE38s in $(Fabh1-PE38)_2$ during disulfide bridge formation is relieved by fusing it at the end of the light chain. The best cytotoxicity value of these dimers showed about 2.5-fold higher on an MCF7 cell line than that of the monovalent reference molecule in ng/ml scale, which is 15-fold higher in pM scale.

A Study on the Detergency Performance of Zeolite A in the Detergent Solution (세제용액 중에서 Zeolite A의 세정성능에 관한 연구)

  • Kang, Yun-Seog;Kim, Hyun-Chang;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.624-630
    • /
    • 1997
  • Zeolite A helps an increase of detergency performance according to showing the ion exchange effect for polyvalant ions and it's detergency performance could be calculated quantitatively by using the disperse stabilization theory because it is water-insoluble material and is as colloid particles in aqueous solution. In this study, zeta potential of carbon black, cellulose, and Zeolite A were measured in each inorganic salt solutions and applied to the theory of Heterocoagulation in order to evaluate the detergency performance of Zeolite A about the particulate soil at the view point of interaction potential energy. Zeolite A was shown help an increase of detergency performance according to the increasing of the steric repulsion between Zeolite A and cellulose in $Na2CO_3$ solution and the decrease of re-deposition of carbon black on the fabric by rapid coagulation with carbon black in $Na_2SO_4$ solution.

  • PDF

Engineered nanoparticles in wastewater systems: Effect of organic size on the fate of nanoparticles

  • Choi, Soohoon;Chen, Ching-Lung;Johnston, Murray V.;Wang, Gen Suh;Huang, Chin-Pao
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2022
  • To verify the fate and transport of engineered nanoparticles (ENP), it is essential to understand its interactions with organic matter. Previous research has shown that dissolved organic matter (DOM) can increase particle stability through steric repulsion. However, the majority of the research has been focused on model organic matter such as humic or fulvic acids, lacking the understanding of organic matter found in field conditions. In the current study, organic matter was sampled from wastewater treatment plants to verify the stability of engineered nanoparticles (ENP) under field conditions. To understand how different types of organic matter may affect the fate of ENP, wastewater was sampled and separated based on their size; as small organic particular matter (SOPM) and large organic particular matter (LOPM), and dissolved organic matter (DOM). Each size fraction of organic matter was tested to verify their effects on nano-zinc oxide (nZnO) and nano-titanium oxide (nTiO2) stability. For DOM, critical coagulation concentration (CCC) experiments were conducted, while sorption experiments were conducted for organic particulates. Results showed that under field conditions, the surface charge of the particles did not influence the stability. On the contrary, surface charge of the particles influenced the amount of sorption onto particulate forms of organic matter. Results of the current research show how the size of organic matter influences the fate and transport of different ENPs under field conditions.

Dispersion Property of Al2O3 Nanosol Prepared by Various Dispersion Factors and Silane Modification under Non-Aqueous Solvent (비수계 용매하에서 다양한 분산인자 및 실란 표면개질에 의해 제조된 Al2O3 나노졸의 분산 특성)

  • Na, Ho Seong;Park, Min-Gyeong;Lim, Hyung Mi;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.733-740
    • /
    • 2016
  • $Al_2O_3$ nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of $Al_2O_3$ powders used were prepared by thermal decomposition method from aluminum ammonium sulfate$(AlNH_4(SO_4)_2)$ while controlling the calcination temperature. $Al_2O_3$ sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the $Al_2O_3$ sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, $Al_2O_3$ sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the $Al_2O_3$ particles. In order to observe the dispersion property of $Al_2O_3$ sol under NMP solvent, $Al_2O_3$ sol dispersed under ethanol solvent was modified and solvent-exchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the $Al_2O_3$ powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.

Study on the Behavior of Colloidal Hematite: Effects of Ionic Composition and Strength and Natural Organic Matter in Aqueous Environments (교질상 적철석의 거동 특성: 수환경 내 이온 조성 및 세기, 자연 유기물이 미치는 영향)

  • Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.347-362
    • /
    • 2020
  • Iron (hydro)oxides in aqueous environments are primarily formed due to mining activities, and they are known to be typical colloidal particles disturbing surrounding environments. Among them, hematites are widespread in surface environments, and their behavior is controlled by diverse factors in aqueous environments. This study was conducted to elucidate the effect of environmental factors, such as ionic composition and strength, pH, and natural organic matter (NOM) on the behavior of colloidal hematite particles. In particular, two analytical methods, such as dynamic light scattering (DLS) and single-particle ICP-MS (spICP-MS), were compared to quantify and characterize the behavior of colloidal hematites. According to the variation of ionic composition and strength, the aggregation/dispersion characteristics of the hematite particles were affected as a result of the change in the thickness of the diffuse double layer as well as the total force of electrostatic repulsion and van der Walls attraction. Besides, the more dispersed the particles were, the farther away the aqueous pH was from their point of zero charge (PZC). The results indicate that the electrostatic and steric (structural) stabilization of the particles was enhanced by the functional groups of the natural organic matter, such as carboxyl and phenolic, as the NOM coated the surface of colloidal hematite particles in aqueous environments. Furthermore, such coating effects seemed to increase with decreasing molar mass of NOM. On the contrary, these stabilization (dispersion) effects of NOM were much more diminished by divalent cations such as Ca2+ than monovalent ones (Na+), and it could be attributed to the fact that the former acted as bridges much more strongly between the NOM-coated hematite particles than the latter because of the relatively larger ionic potential of the former. Consequently, it was quantitatively confirmed that the behavior of colloidal hematites in aqueous environments was significantly affected by diverse factors, such as ionic composition and strength, pH, and NOM. Among them, the NOM seemed to be the primary and dominant one controlling the behavior of hematite colloids. Meanwhile, the results of the comparative study on DLS and spICPMS suggest that the analyses combining both methods are likely to improve the effectiveness on the quantitative characterization of colloidal behavior in aqueous environments because they showed different strengths: the main advantage of the DLS method is the speed and ease of the operation, while the outstanding merit of the spICP-MS are to consider the shape of particles and the type of aggregation.