DOI QR코드

DOI QR Code

Study on the Behavior of Colloidal Hematite: Effects of Ionic Composition and Strength and Natural Organic Matter in Aqueous Environments

교질상 적철석의 거동 특성: 수환경 내 이온 조성 및 세기, 자연 유기물이 미치는 영향

  • Lee, Woo-Chun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • Lee, Sang-Woo (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University)
  • 이우춘 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS)) ;
  • 이상우 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS)) ;
  • 김순오 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS))
  • Received : 2020.06.12
  • Accepted : 2020.08.21
  • Published : 2020.08.28

Abstract

Iron (hydro)oxides in aqueous environments are primarily formed due to mining activities, and they are known to be typical colloidal particles disturbing surrounding environments. Among them, hematites are widespread in surface environments, and their behavior is controlled by diverse factors in aqueous environments. This study was conducted to elucidate the effect of environmental factors, such as ionic composition and strength, pH, and natural organic matter (NOM) on the behavior of colloidal hematite particles. In particular, two analytical methods, such as dynamic light scattering (DLS) and single-particle ICP-MS (spICP-MS), were compared to quantify and characterize the behavior of colloidal hematites. According to the variation of ionic composition and strength, the aggregation/dispersion characteristics of the hematite particles were affected as a result of the change in the thickness of the diffuse double layer as well as the total force of electrostatic repulsion and van der Walls attraction. Besides, the more dispersed the particles were, the farther away the aqueous pH was from their point of zero charge (PZC). The results indicate that the electrostatic and steric (structural) stabilization of the particles was enhanced by the functional groups of the natural organic matter, such as carboxyl and phenolic, as the NOM coated the surface of colloidal hematite particles in aqueous environments. Furthermore, such coating effects seemed to increase with decreasing molar mass of NOM. On the contrary, these stabilization (dispersion) effects of NOM were much more diminished by divalent cations such as Ca2+ than monovalent ones (Na+), and it could be attributed to the fact that the former acted as bridges much more strongly between the NOM-coated hematite particles than the latter because of the relatively larger ionic potential of the former. Consequently, it was quantitatively confirmed that the behavior of colloidal hematites in aqueous environments was significantly affected by diverse factors, such as ionic composition and strength, pH, and NOM. Among them, the NOM seemed to be the primary and dominant one controlling the behavior of hematite colloids. Meanwhile, the results of the comparative study on DLS and spICPMS suggest that the analyses combining both methods are likely to improve the effectiveness on the quantitative characterization of colloidal behavior in aqueous environments because they showed different strengths: the main advantage of the DLS method is the speed and ease of the operation, while the outstanding merit of the spICP-MS are to consider the shape of particles and the type of aggregation.

수환경 내 철 (수산)산화물은 주로 광산 활동에 의해 생성되며 주변 환경을 교란시키는 대표적인 교질물이다. 철 (수산)산화물들 중 지표에 많이 분포하고 있는 적철석은 수환경 내 다양한 환경인자들로 인해 거동 특성이 변한다. 본 연구는 배경용액의 이온 조성과 세기, pH, 자연 유기물 등의 환경적 인자가 교질상 적철석의 거동에 미치는 영향을 살펴보고자 수행되었다. 특히, 적철석 교질물 입자들의 거동특성을 보다 더 명확하게 해석하고자 동적광산란분석기(dynamic light scatterer, DLS)와 단일입자 유도결합플라즈마질량분석기(single particle ICP-MS, spICP-MS)를 비교하여 분석을 수행하였다. 배경용액의 이온 조성과 세기가 변함에 따라 적철석 입자의 표면 확산이중층의 두께가 변화될 뿐만 아니라, 입자에 미치는 정전기적 힘과 van der Walls의 합력이 변하면서 입자의 응집/분산 특성이 달라지는 것으로 나타났다. 또한 수환경의 pH가 적철석 입자의 영전하점(point of zero charge, PZC)에서 멀어질수록 정전기적 반발력이 커져 입자들이 분산되는 것을 확인하였다. 수환경 내 자연 유기물이 적철석의 표면을 코팅함에 따라서 자연 유기물 표면에 존재하는 카르복실기와 페놀기 등과 같은 작용기들로 인하여 적철석 입자의 정전기적 안정화와 구조적 안정화가 증가하는 것으로 조사되었다. 이러한 안정화 효과는 자연 유기물의 농도가 작을수록 증가하지만, 상대적으로 이온포텐셜이 큰 2가 양이온이 1가 양이온보다 자연 유기물로 코팅된 적철석 입자들 사이에서 더 큰 가교역할을 하기 때문에 자연 유기물로 코팅된 적철석 입자들의 안정화(분산)를 방해하는 것으로 확인되었다. 결론적으로, 수환경 내 교질상 적철석의 거동 특성은 이온의 조성과 세기, pH, 그리고 자연 유기물 등과 같은 환경적 인자들에 많은 영향을 받는 것을 정량적으로 확인할 수 있었는데, 그 중 자연 유기물은 수환경에서 교질물의 거동에 매우 지배적이고 주요한 제어인자임을 알 수 있었다. 한편, 적철석 입자의 거동 특성을 정량화할 수 있는 두 분석기법을 비교한 결과, DLS 분석기법은 신속성 및 편의성에서 강점을 지니는 반면 spICP-MS의 분석기법은 입자의 모양 및 응집 형태 등을 고려할 수 있는 장점이 있기 때문에 두 분석기법을 조합하여 활용하면 수환경 내 교질물의 거동 특성을 연구하는데 보다 더 효과적일 것으로 판단된다.

Keywords

References

  1. Baalousha, M. (2009) Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci. Tot. Environ., v. 407, p. 2093-2101. https://doi.org/10.1016/j.scitotenv.2008.11.022
  2. Baalousha, M., Nur, Y., Romer, I., Tejamaya, M. and Lead, J.R. (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci. Total Environ., v. 454-455, p. 119-131. https://doi.org/10.1016/j.scitotenv.2013.02.093
  3. Bai, B., Hankins, N.P., Hey, M.J. and Kingman, S.W. (2004) In situ mechanistic study of SDS adsorption on hematite for optimized froth flotation. Ind. Eng. Chem. Res., v. 43, p. 5326-5338. https://doi.org/10.1021/ie034307t
  4. Bhattacharjee, S. (2016) DLS and zeta potential - What they are and what they are not?, J. Control. Release, v. 235, p. 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017
  5. Chekli, L., Phuntsho, S., Roy, M., Lombi, E., Donner, E. and Shon, H.K. (2013) Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Res., v. 47, p. 4585-4599. https://doi.org/10.1016/j.watres.2013.04.029
  6. Chen, K.L., Mylon, and Elimelech, M. (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ. Sci. Technol. v. 40, p. 1516-1523. https://doi.org/10.1021/es0518068
  7. Cheng, H., Hu, Y., Luo, J., Xu, B. and Zhao, J. (2009) Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J. Hazard. mater,, v. 165, p. 13-26. https://doi.org/10.1016/j.jhazmat.2008.10.070
  8. Cho, K., Kim, B., Kim, J., Choi, N. and Park, C. (2013) The Possibility of Gold Recovery from the Iron- Hydroxide in the Acid Mine Drainage by Lead-Fire Assay. Econ. Environ. Geol., v. 46(6) p. 477-84.
  9. Choi, S., Pak, S.J., Lee, P. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Econ. environ. geol., v. 37, p. 1-19.
  10. Chorover, J. and Amistadi, M.K. (2001) Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochim. Cosmochim. Acta., v. 65, p. 95-109. https://doi.org/10.1016/S0016-7037(00)00511-1
  11. Dickson, D., Liu, G., Li, C., Tachiev, G. and Cai, Y. (2012) Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci. Tot. Environ., v. 419, p. 170-177. https://doi.org/10.1016/j.scitotenv.2012.01.012
  12. Dinali, R., Ebrahiminezhad, A., Manley-Harris, M., Ghasemi, Y. and Berenjian, A. (2017) Iron oxide nanoparticles in modern icrobiology and biotechnology. Crit. Rev. Microbiol., v. 43, p. 493-507. https://doi.org/10.1080/1040841X.2016.1267708
  13. Donovan, A.R., Adams, C.D., Ma, Y., Stephan, C., Eichholz, T. and Shi, H. (2018) Fate of nanoparticles during alum and ferric coagulation monitored using single particle ICP-MS. Chemosphere, v. 195, p. 531-541. https://doi.org/10.1016/j.chemosphere.2017.12.116
  14. El Badawy, A.M., Scheckel, K.G., Suidan, M. and Tolaymat, T. (2012) The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci. Total Environ. v. 429, p. 325-331. https://doi.org/10.1016/j.scitotenv.2012.03.041
  15. Fabrega, J., Luoma, S.N., Tyler, C.R., Galloway, T.S. and Lead, J.R. (2011) Silver nanoparticles behaviour and effects in the aquatic environment. Environ. Int., v. 37, p. 517-531. https://doi.org/10.1016/j.envint.2010.10.012
  16. Fernando, I. and Zhou, Y. (2019) Concentration dependent effect of humic acid on the transformations of silver nanoparticles. J. Mole. Liquids, V. 284, p. 291-299. https://doi.org/10.1016/j.molliq.2019.04.027
  17. Filius, J.D., Lumsdon, D.G., Meeussen, J.C. L., Hiemstra, T. and van Riemsdijk, W.H. (2000) Adsorption of fulvic acid on goethite. Geochim. Cosmochim. Acta., v. 64, p. 51-60. https://doi.org/10.1016/S0016-7037(99)00176-3
  18. Gregory, J. (2009) Monitoring particle aggregation processes. Adv. Colloid Interfac., v. 147-148, p. 109-123. https://doi.org/10.1016/j.cis.2008.09.003
  19. Gu, B., Schmitt, J., Chen, Z., Liang L. and McCarthy, J.F. (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol. v. 28, p. 38-46. https://doi.org/10.1021/es00050a007
  20. Hassellav, M., Readman, J.W., Ranville, J.F. and Tiede, K. (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology, v. 17, p. 344-361. https://doi.org/10.1007/s10646-008-0225-x
  21. He, Y. T., Wan, J. and Tokunaga, T. (2008) Kinetic stability of hematite nanoparticles: the effect of particle sizes. J. Nanopart. Res. v. 10, p. 321-332. https://doi.org/10.1007/s11051-007-9255-1
  22. Hu, J.D., Zevi, Y., Kou, X.M., Xiao, J., Wang, X.J. and Jin, Y. (2010) Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci. Tot. Environ., v. 408, p. 3477-3489. https://doi.org/10.1016/j.scitotenv.2010.03.033
  23. Illes, E. and Tombacz, E. (2004) The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids Surf. A Physicochem. Eng. Asp., v. 230, p. 99-109. https://doi.org/10.1016/j.colsurfa.2003.09.017
  24. Jeong, U., Teng, X., Wang, Y., Yang, H. and Xia, Y. (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv. Mater., v. 19, p. 33-60. https://doi.org/10.1002/adma.200600674
  25. Kefeni, K.K., Msagati, T.A.M., Nkambule, T.T.I. and Mamba, B.B. (2018) Synthesis and application of hematite nanoparticles for acid mine drainage treatment. J. Environ. Chem. Eng., v. 6, p. 1865-1874. https://doi.org/10.1016/j.jece.2018.02.037
  26. Kim, E.S., Katherine, M.T., Benita, J.D., Jeffrey, R.D. and Igor, L.M. (2011) Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Anal. Chem., v. 83, p. 4453-4488. https://doi.org/10.1021/ac200853a
  27. Kim, H., Na, S., Lee, B., Kim, K., Lee, , W., Kim, S. and Lee, B. (2013) Metal-Nanoparticle Analysis using Realtime Single Particle Mode Inductively Coupled Plasma Mass Spectrometry (RTspICP-MS). J. Korean Soc. Environ. Anal., v. 16, p. 256-265.
  28. Kim, S.H. Lee, W.C., Cho, H.G. and Kim. S.O. (2012) Characterization of Arsenic Adsorption onto Hematite. Korean J. Mineral., v. 25, p. 197-210. https://doi.org/10.9727/jmsk.2012.25.4.197
  29. Ko, l., Kim, J., Kim, K., Ahn, J. S. and Davis, A. P. (2005) Effect of Soil Organic Matter on Arsenic Adsorption in the Hematite-Water Interface: Chemical Speciation Modeling and Adsorption Mechanism. Econ. Environ. Geol., v. 38(1) p. 23-31.
  30. Kretzschmar, R., Holthoff, H. and Sticher, H. (1998) Influence of pH and Humic Acid on Coagulation Kinetics of Kaolinite: A Dynamic Light Scattering Study. J. Colloid Interf. Sci., v. 202, p. 95-103. https://doi.org/10.1006/jcis.1998.5440
  31. Lee, M., Kim, Y. H. and Kim, J.J. (2019) Characteristics of Removal and Precipitation of Heavy Metals with pH change of Artificial Acid Mine Drainage. Econ. Environ. Geol., v. 52(6) p. 529-39. https://doi.org/10.9719/EEG.2019.52.6.529
  32. Lee, S., Bi, X., Reed, R. B., Ranville, J. F., Herckes, P. and Westerhoff, Paul. (2014) Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol., v. 48, p. 10291-10300. https://doi.org/10.1021/es502422v
  33. Lee, W., Kim, S. and Kim, Y. (2015) Characterization of Behavior of Colloidal Zero-Valent Iron and Magnetite in Aqueous Environment. J. Miner. Soc. Korea, v. 28, p. 95-108. https://doi.org/10.9727/jmsk.2015.28.2.95
  34. Lee, W., Kim, S., Lee, B., Lee, S., Kim, K., Shim, Y., Park, H. and Kim, S. (2013) The Hydrogeochemical Study on the Passive Treatment System of the Dalseong Mine. J. KSMER., v.50(1), p. 56-69. https://doi.org/10.12972/ksmer.2013.50.1.056
  35. Lee, W., Lee, B., Lee, S., Hwang, Y.S., Jo, E., Eom, I., Lee, S. and Kim, S. (2016) Optimisation, evaluation and application of asymmetrical flow field-flow fractionation with single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) to characterise silver nanoparticles in environmental media. Microchem. J., v. 129, p. 219-230. https://doi.org/10.1016/j.microc.2016.06.030
  36. Lin, D., Cai, P., Peacock, C. L., Wu, Y., Gao, C., Peng, W., Huang, Q. and Liang, W. (2018) Towards a better understanding of the aggregation mechanisms of iron (hydr)oxide nanoparticles interacting with extracellular polymeric substances: Role of pH and electrolyte solution. Sci. Tot. Environ., v. 645(15), p. 372-379. https://doi.org/10.1016/j.scitotenv.2018.07.136
  37. Liu, J., Yu, S., Yin, Y. and Chao, J. (2011) Methods for separation, identification, characterization and quantification of silver nanoparticles. TrAC Trends in Anal. Chem., v. 33, p. 95-106.
  38. Machala, J., Zboril, R. and Gedanken, A. (2007) Amorphous iron(III) oxides: a review. J. Phys. Chem., v. 111, p. 4003-4018. https://doi.org/10.1021/jp064992s
  39. Mamindy-Pajany, Y., Hurel, C., Marmier, N. and Romeo, M. (2009) Arsenic adsorption onto hematite and goethite. C. R. Chimie., v. 12, p. 876-881. https://doi.org/10.1016/j.crci.2008.10.012
  40. Meakin, P. (1984) Diffusion-limited aggregation in three dimensions: Results from a new cluster-cluster aggregation model. Adv. Colloid Interfac., v. 102, p. 491-504. https://doi.org/10.1016/0021-9797(84)90252-2
  41. Mitrano, D.M., Lesher, E.K., Bednar, A., Monserud, J., Higgins, C.P. and Ranville, J.F. (2012) Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ. Toxicol. Chem., v. 31, p. 115-121. https://doi.org/10.1002/etc.719
  42. Mozhayeva, D. and Engelhard, C. (2019) A critical review of single particle inductively coupled plasma mass spectrometry - A step towards an ideal method for nanomaterial characterization. J. Anal. At. Spectrom., (Critical Review) DOI: 10.1039/C9JA00206E.
  43. Nel, A., Xia, T., Medler, L. and Li, N. (2006) Toxic potential of materials at the nanolevel. Sci., v. 311, p. 622-627. https://doi.org/10.1126/science.1114397
  44. Pace, H.E., Rogers, N.J., Jarolimeck, C., Coleman, V.A., Higgins, C.P. and Ranville, J.F. (2012) Determining transport efficiency for the purpose of counting and sizing nanoparti-cles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. v. 83, p. 9361-9369.
  45. Pang, S.C., Chin, S.F., and Anderson., M.A. (2007) Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential. J. Colloid Interf. Sci., v. 300, p. 94-101. https://doi.org/10.1016/j.jcis.2006.03.031
  46. Parsai, T. and Kumar, A. (2020) Stability and characterization of mixture of three particle system containing ZnO-CuO nanoparticles and clay. Sci. Tot. Environ., v. 740(20), p. 140095. https://doi.org/10.1016/j.scitotenv.2020.140095
  47. Patel, D., Moon, J.Y., Chang, Y., Kim, T.J. and Lee, G.H. (2008) Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as MRI contrast agent. Colloids and Surfaces A, v. 313-314, p. 91-94. https://doi.org/10.1016/j.colsurfa.2007.04.078
  48. Paunovic, J., Vucevic, D., Radosavljevica, T., Mandic-Rajčevic, S. and Pantic, I. (2019) Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis. Chemi-Biol. Interact., v, 316, p. 108935.
  49. Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M. and Tufenkji, N. (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environ. Sci. Tech., v. 44, p. 6532-6549. https://doi.org/10.1021/es100598h
  50. Ralph, D.L., David, J.A.S., David, W.B., Laura, E.S., Richard, T.W., David, G.J. and Christopher, J.W. (2009) Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-Compost PRB. Environ. Sci. Tech., v. 43, p. 1970-1976. https://doi.org/10.1021/es802394p
  51. Reed, R.B., Higgins, C.P., Westerhoff, P., Tadjikid, S. and Ranville, J.F. (2011) Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., v. 27, p. 1093-1100. https://doi.org/10.1039/c2ja30061c
  52. Siebentritt, M., Volovitch, P., Ogle, K. and Lefevre, G. (2014) Surface potential of hematite particles in high concentration electrolytes: Electroacoustic measurements and suspension stability. Colloids Surf. A Physicochem. Eng. Asp., v. 443, p. 338-344 https://doi.org/10.1016/j.colsurfa.2013.11.039
  53. Stephan, C. and Hineman, A. (2014) Iron Nanoparticles by spICP-MS: Overcoming Spectral Interferences Using Universal Cell Technology. PerkinElmer, Inc. Shelton, CT.
  54. Tan, H.T. (2011) Principle of soil chemistry. 4nd(ed.), CRC press, Taylor & Francis Group, New York, 305-309p.
  55. Tipping, E. and Higgins, D. C. (1982) The effect of adsorbed humic substances on the colloid stability of haematite particles. Colloids Surf., v. 5, p. 85-92. https://doi.org/10.1016/0166-6622(82)80064-4
  56. Xu, C., Deng, K., Li, J. and Xu, R. (2015) Impact of environmental conditions on aggregation kinetics of hematite and goethite nanoparticles. J. Nanopart. Res., v.17(394), p.1-13. https://doi.org/10.1007/s11051-014-2856-6
  57. Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C,, Wei, Z., Chao, H., Xie, G.X. and Liu, Z.F. (2012) Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Tot. Environ., v. 424, p. 1-10. https://doi.org/10.1016/j.scitotenv.2012.02.023
  58. Wilkinson, K. J., Joz-Rolland, A. and Buffle, J. (1997) Different role of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters. Limnol. Oceanogr. v. 42, p. 1714-1724. https://doi.org/10.4319/lo.1997.42.8.1714
  59. Zhang, Y., Chen, Y. Westerhoff, P., Hristovski, K. and Crittenden, J. C. (2008) Stability of commercial metal oxide nanoparticles in water. Water Res. v. 42, p. 2204-2212. https://doi.org/10.1016/j.watres.2007.11.036
  60. Zhu, M., Wang, H., Keller, A. A., Wang, T. and Li, F. (2014) The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Sci. Tot. Environ., v. 487, p. 375-380. https://doi.org/10.1016/j.scitotenv.2014.04.036