• 제목/요약/키워드: Stereum hirsutum

검색결과 9건 처리시간 0.025초

Sterin C, a New Antioxidant from the Mycelial Culture of the Mushroom Stereum hirsutum

  • Yoo, Nam-Hee;Yoo, Ick-Dong;Kim, Jin-Woo;Yun, Bong-Sik;Ryoo, In-Ja;Yoon, Eui-Soo;Chinh, Nguyen Thi;Kim, Jong-Pyung
    • Journal of Applied Biological Chemistry
    • /
    • 제48권1호
    • /
    • pp.38-41
    • /
    • 2005
  • Structurally new antioxidative metabolite was isolated from mycelial culture of mushroom Stereum hirsutum. Culture broth was subjected to Diaion HP-20 column chromatography, and 70% aqueous MeOH eluent was extracted with EtOAc. EtOAc extract was purified through silica gel and Sephadex LH-20 column chromatographies, and reversed phase $C_{18}$ HPLC. Compound was revealed to be new dihydroxylated derivative of sterin B with molecular formula of $C_{12}H_{16}O_5$(MW 240) by MS and various NMR spectral data analyses, and designated as sterin C. Sterin C showed superoxide radical-scavenging activity with $EC_{50}$ value of 0.31 mM.

Biotransformation of (-)-α-Pinene by Whole Cells of White Rot Fungi, Ceriporia sp. ZLY-2010 and Stereum hirsutum

  • Lee, Su-Yeon;Kim, Seon-Hong;Hong, Chang-Young;Kim, Ho-Young;Ryu, Sun-Hwa;Choi, In-Gyu
    • Mycobiology
    • /
    • 제43권3호
    • /
    • pp.297-302
    • /
    • 2015
  • Two white rot fungi, Ceriporia sp. ZLY-2010 (CER) and Stereum hirsutum (STH) were used as biocatalysts for the biotransformation of (-)-${\alpha}$-pinene. After 96 hr, CER converted the bicyclic monoterpene hydrocarbon (-)-${\alpha}$-pinene into ${\alpha}$-terpineol (yield, 0.05 g/L), a monocyclic monoterpene alcohol, in addition to, other minor products. Using STH, verbenone was identified as the major biotransformed product, and minor products were myrtenol, camphor, and isopinocarveol. We did not observe any inhibitory effects of substrate or transformed products on mycelial growth of the fungi. The activities of fungal manganese-dependent peroxidase and laccase were monitored for 15 days to determine the enzymatic pathways related to the biotransformation of (-)-${\alpha}$-pinene. We concluded that a complex of enzymes, including intra- and extracellular enzymes, were involved in terpenoid biotransformation by white rot fungi.

Optimization of ${\beta}$-Glucosidase Production by a Strain of Stereum hirsutum and Its Application in Enzymatic Saccharification

  • Ramachandran, Priyadharshini;Nguyen, Ngoc-Phuong-Thao;Choi, Joon-Ho;Kang, Yun Chan;Jeya, Marimuthu;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.351-356
    • /
    • 2013
  • A high ${\beta}$-glucosidase (BGL)-producing strain, Stereum hirsutum, was identified and isolated and showed a maximum BGL activity (10.4 U/ml) when cultured with Avicel and tryptone as the carbon and nitrogen sources, respectively. In comparison with other BGLs, BGL obtained from S. hirsutum showed a higher level of activity to cellobiose ($V_{max}$ = 172 U/mg, and $k_{cat}$ = 281/s). Under the optimum conditions (600 rpm, $30^{\circ}C$, and pH 6.0), the maximum BGL activity of 10.4 U/ml with the overall productivity of 74.5 U/l/h was observed. BGL production was scaled up from a laboratory scale (7-L fermenter) to a pilot scale (70-L fermenter). When S. hirsutum was cultured in fed-batch culture with rice straw as the carbon source in a 70-L fermenter, a comparable productivity of 78.6 U/l/h was obtained. Furthermore, S. hirsutum showed high levels of activity of other lignocellulases (cellobiohydrolase, endoglucanase, xylanase, and laccase) that are involved in the saccharification of biomasses. Application of S. hirsutum lignocellulases in the hydrolysis of Pinus densiflora and Catalpa ovata showed saccharification yields of 49.7% and 43.0%, respectively, which were higher than the yield obtained using commercial enzymes.

Novel Sesquiterpenoid Compounds from Culture Broth of Stereum hirsutum

  • Cho, Yang-Rae;Yun, Bong-Sik;Lee, In-Kyoung;Lee, Tae-Ho;Yoo, Ick-Dong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.130-130
    • /
    • 1998
  • Two novel compounds SSC1 and SSC2 were isolated from culture broth produced from the strain of Stereum hirsutum by using of YM broth. They were isolated through HP-20 column chromatography, silica gel column chromatography and preparative HPLC, successively. The molecular formulas of SSC1 and SSC2. were determined as C$\sub$15/H$\sub$22/O$_3$ by high resolution EI -mass. The chemical structures of SSC1 and SSC2 were determined as sesquiterpenoid compounds by spectroscopic analysis of UV, IR, $^1$H NMR, $\^$13/C NMR, DEPT, HMQC and HMBC spectrum.

  • PDF

한국산 꽃구름버섯속의 분류학적 연구 (Taxonomic Study on Korean Stereum)

  • 임영운;정학성
    • 한국균학회지
    • /
    • 제27권5호
    • /
    • pp.349-353
    • /
    • 1999
  • 현재까지 국내에 보고된 꽃구름버섯은 도합 5종으로서 그중 4종은 흰테꽃구름버섯(Stereum gausapatum), 꽃구름버섯(S. hirsutum), 갈색꽃구름버섯(S. ostrea), 및 배착꽃구름버섯(S. ochraceo-flavum)이며, 나머지 1종은 거북꽃구름 버섯속에 속하는 너털거북꽃구름버섯(Xylobolus spectabile)으로서 낭상체의 형태적 특징에 의하여 거북꽃구름버섯속(Xylobolus)에 속하여 왔으나, Boidin과 Chamuris는 배양학적 특징에 의하여 후자를 꽃구름버섯속(Stereum)으로 분류하고 있다. 본 연구에서는 "너털거북꽃구름버섯"(X. spectabile)을 꽃구름버섯속에 재분류하여 분류체계를 개선하고 우리말 이름을 "너털꽃구름버섯"(S. spectabile)으로 개칭하는 바이다. 또한 서울대학교 표본실(Seoul National University Fungal Collection, SFC)에 보관되어 있는 꽃구름버섯을 대상으로 조사한 결과 5종의 꽃구름버섯종들이 미기록종으로 동정되었으며, 이들 미기록종은 Stereum subtomentosum(갈색털꽃구름버섯, 신칭), S. peculiare(껍질 꽃구름버섯, 신칭), S. sanguinolentum(유혈꽃구름버섯, 신칭), S. striatum(줄무늬꽃구름버섯, 신칭), 및 S. complicatum(복합꽃구름버섯, 신칭)이었다. 이로서 한국산 꽃구름버섯 종들은 도합 10종에 이르며 본 연구를 통하여 국내 꽃구름 버섯의 동정을 위하여 새로운 검색표를 제시하였다.

  • PDF

Biological Pretreatment of Softwood Pinus densiflora by Three White Rot Fungi

  • Lee, Jae-Won;Gwak, Ki-Seob;Park, Jun-Yeong;Park, Mi-Jin;Choi, Don-Ha;Kwon, Mi;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • 제45권6호
    • /
    • pp.485-491
    • /
    • 2007
  • The effects of biological pretreatment on the Japanese red pine Pinus densiflora, was evaluated after exposure to three white rot fungi Ceriporia lacerata, Stereum hirsutum, and Polyporus brumalis. Change in chemical composition, structural modification, and their susceptibility to enzymatic saccharification in the degraded wood were analyzed. Of the three white rot fungi tested, S. hirsutum selectively degraded the lignin of this sortwood rather than the holocellulose component. After eight weeks of pretreatment with S. hirsutum, total weight loss was 10.7%, while lignin loss was the highest at 14.52% among the tested samples. However, holocellulose loss was lower at 7.81 % compared to those of C. lacerata and P. brumalis. Extracelluar enzymes from S. hirsutum showed higher activity of ligninase and lower activity of cellulase than those from other white rot fungi. Thus, total weight loss and changes in chemical composition of the Japanese red pine was well correlated with the enzyme activities related with lignin- and cellulose degradation in these fungi. Based on the data obtained from analysis of physical characterization of degraded wood by X-ray Diffractometry (XRD) and pore size distribution, S. hirsutum was considered as an effective potential fungus for biological pretreatment. In particular, the increase of available pore size of over 120 nm in pretreated wood powder with S. hirsutum made enzymes accessible for further enzymatic saccharification. When Japanese red pine chips treated with S. hirsutum were enzymatically saccharified using commercial enzymes (Cellulclast 1.5 L and Novozyme 188), sugar yield was greatly increased (21.01 %) compared to non-pre treated control samples, indicating that white rot fungus S. hirsutum provides an effective process in increasing sugar yield from woody biomass.

Remazol Brilliant Blue R 탈색능과 리그닌 분해 효소시스템을 이용한 유기용매 리그닌 생분해 우수 균주 선별 (Screening of Outstanding White Rot Fungi for Biodegradation of Organosolv Lignin by Decolorization of Remazol Brilliant Blue R and Ligninolytic Enzymes Systems)

  • 홍창영;김호용;장수경;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권1호
    • /
    • pp.19-32
    • /
    • 2013
  • 본 연구에서는 백색부후균의 리그닌 분해 효소 시스템을 이용하여, 다양한 균주 중에서 목질계 바이오매스 유기용매 전처리 과정에서 발생한 리그닌(유기용매 리그닌)의 생분해에 적합한 우수 균주를 선별하고자 하였다. 우선 분양받은 15개의 백색부후균을 대상으로 shallow stationary cultur (SSC)배지와 malt extract broth (MEB)배지에 유기용매 리그닌의 첨가에 따른 Remazol Brilliant Blue R (RBBR)의 흡광도 변화를 측정하였다. RBBR 탈색능 결과, SSC 배지에서 Ceriporiopsis subvermispora, Ceriporia lacerate, Fomitopsis insularis, Phanerochaete chrysosporium, Polyporus brumalis, Stereum hirsutum 등 6종의 백색부후균에서 급격한 흡광도 변화를 나타냈다. 배양 초기에 급격한 흡광도 변화를 나타낸 6개의 백색부후균을 대상으로 균체 외 단백질 농도 및 리그닌 분해 효소 활성을 측정하였다. 선발된 6개의 균 중에서 S. hirsutum과 P. chrysosporium은 유기용매 리그닌을 첨가한 실험구에서 높은 단백질 농도가 측정되었다. 반면, 리그닌 분해 효소 활성은 F. insularis에서 배양 6일째에 manganese peroxidase (MnP) 활성이 1,545 U/mg, laccase 활성은 1,259 U/mg으로 최고 활성을 나타냈다. 결론적으로, 균체 외 단백질 농도 및 리그닌 분해 효소 활성이 전반적으로 높았던 $STH^*$와 MnP 및 laccase의 활성이 가장 높은 FOI가 유기용매 리그닌 생분해에 유리하게 작용할 것으로 판단된다.

목질분해균에 의한 인피섬유의 미생물분해 특성 (Characteristics of Microbial Decomposition of Bast Fibers by Wood Rot Fungi)

  • 윤승락;최인규;이재원;김재경
    • 임산에너지
    • /
    • 제20권1호
    • /
    • pp.6-11
    • /
    • 2001
  • 한지의 원료가 되는 닥섬유의 펄프화를 위해 인피부에 목질 분해균을 처리하여 인피섬유의 단섬유화를 위한 미생물의 분해특성과 처리시간별 인피섬유의 분리에 대하여 검토하였다. 판막버섯이나 구름버섯으로 20일간 처리시 중량감소율이 약 50%에 이르러 오히려 이용 가능한 섬유소의 분해도 함께 초래하는 것으로 추정할 수 있다. 그러나 꽃구름버섯이나 벽돌빛뿌리 버섯은 인피섬유의 제일 외피에 존재하는 흑청색 부분을 잘 본해시키고 섬유소 손상을 적게하는 특성을 가진 것으로 나타났다. 꽃구름버섯은 처리 10일째가지 78.9%의 셀룰로오스 함량을 유지하고, 리그닌은 7.2%를 나타내어 제일 양호한 분해 양상을 보였다. 현미경적 관찰의 결과에서는 느타리버섯의 경우 처리 30일부터 인피부의 섬유가 분리되어 단섬유화 되며, 50일간 장기간 처리하여도 섬유표면의 손상은 발견되지 않았다.

  • PDF

Fungal Biodiversity in Cardamom Protected Forests and Seima Biodiversity Conservation Area of Cambodia

  • Kim, Nam Kyu;Lee, Jin Heung;Jo, Jong Won;Bunthoeun, Roth;Ngeth, Chea;Lee, Jong Kyu
    • Journal of Forest and Environmental Science
    • /
    • 제32권2호
    • /
    • pp.158-163
    • /
    • 2016
  • Mushroom surveys and collections were conducted in the western and eastern forest areas in Cambodia, and then fungal biodiversity was analyzed by identifying mushrooms. One thousand and three hundreds eighty three specimens were identified by morphological and genetical characteristics, and were classified into 238 species, 160 genera, 52 families, 15 orders, and 3 phylums. The collected mushrooms were immersed in 70% ethyl alcohol for DNA extraction, and the rest of them were dried in the portable mushroom dryer for 12 hrs. Among these mushrooms, the genera Mycena (8.7%), Ganoderma (5.6%), Microporus (5.3%), Marasmius (4.2%), Marasmiellus (3.0%), Phellinus (2.5%), Trametes (2.5%), Hygrocybe (1.9%) and Pycnoporus (1.5%) were dominant. In the western Cambodia, 1,061 specimens were collected from Koh Kong forests, while 263 specimens were collected from the eastern Cambodia, Seima and Mondulkiri forests. Elevations of surveyed sites were ranged from 0 to 750 m above sea level. The number of species observed in the elevation of 251-500 m was the highest as compared to the other ranges of elevation. Daldinia concentrica, Microporus vernicipes, Microporus xanthopus, Pycnoporus coccineus, Stereum hirsutum, and Stereum ostrea were commonly distributed in all ranges of elevation, while the distribution of Ceratomyxa fruticulosa, Panus fulvus, Schizophyllum, Trametes versicolor, and Tyromyces chioneus were limited under 500 m. One hundred and forty one species including Amauroderma sp., Bjerkandera adusta, Trichaptum abietinum, and Tyromyces chioneus were collected only in Cardamom, while 20 species including Auricularia auricula-judae, Coriolopsis sanguinaria, Rigidoporus microporus, and Xylaria polymorpha were collected only in Seima. Ganoderma sp., Mycena sp., Marasmius sp., Microporus xanthopus, Phellinus sp., and Russula sp. were dominant species in both the western and eastern Cambodia. Species diversity indices in the eastern and western survey sites were 1.83 and 1.77, respectively, while evenness indices were 0.92 and 0.90. The species similarity index between two survey sites was 0.42.