The purpose of this study is to investigate the leisure and social support types which affect elderly depression. The study sample comprised 275 cases, and the analysis was performed by t-test, ANOVA, multiple regression and stepwise regression on SPSS ver. 10.0. The following three principle results were obtained: First, the types of leisure and social support differed according to domographic profiles. Second, among 6 sub-factors of leisure type, sports and viewing impressions activities contributed positively to elderly depression, as did emotional and appraisement supports among 4 sub-factors of social support. Third, stepwise regression analysis, conducted to determine the effect weights of factors of leisure types and social supports, showed that emotional support, social relationships activity, and viewing impressions activity strongly affected elderly depression in the order listed. Based of these results, the study suggested methods for developing an active leisure activities program which is necessary to minimize elderly depression.
This study was performed to determine the correlationship between temperature and overall removals of BOD, SS and to demonstrate the effect of temperature on treatment performance. These data for a period from February 1, 1977 to January 31, 1980 were obtained from the Cheong-Gye Cheon Sewage Treatment plant. The results of correlation and stepwise multiple regression analysis were as follows. 1) Secondary effluent BOD and SS showed negative correlationship with water temperature, with correlation coefficient of -0.1710, and -0.1654 respectively. 2) Correlation coefficient of BOD, SS removal rate and water temperature were 0.1823 and 0.0429 respectively. 3) Regresion equation for estimate of BOD removal rate was as follows $\widehat{Y}_1$ (BOD removal rate)=63.9994+0.5442X(water temperature). And BOD removal rate showed non significant change according to the water temperature. 4) Regression equation for estimate of SS removal rate was as follows $\widehat{Y}_2$ (SS removal rate)=61.6881+0.1514X(Water temperature). And SS removal rate showed non significant change according to the water temperature. 5) According to the Stepwise Multiple Regression analysis, water temperature ranked second order in the BOD removal rate estimation and the equation was as follows $\widehat{Y}_1$ (BOD removal rate)=69.7398+0.2665 $X_1$ (Primary effluent BOD)+0.3562 $X_2$ (Water temperature)-0.0122 $X_3(Flow)+4413.271X_4$ (Organic Loading).
Objective: The study aimed to develop a functional performance index that evaluates the functional performance of Parkinson's patients, i.e., to integrate biomechanical measurements of walking, balance, muscle strength and tremor, and to use multiple linear regression with stepwise methods to identify the most suitable predictors for the progression of disease. Method: A total of 60 subjects were tested for sub-variables of four factors: walking, balance, isometric strength and hand tremors. Potential independet variables were extracted through correlation analysis of the sub-variables and dependent variables, Hoehn & Yahr scale. And then, a stepwise multiple regression analysis using the potential independent variables was performed to identify predictor of Hoehn & Yahr scale. Results: First, the results of the study showed that physical composition and gait had a relatively more correlated with the progression of the disease, compared to balance and hand tremor. Second, Parkinson's functional performance is characterized by dynamic pattern of walking, such as foot clearance and turning angle (TA) of walking, and a high-explained regression model is completed. Conclusion: The study emphasized the importance of walking variables and body composition in minor pathological features compared to Parkinson's patient's balancing ability and hand tremor. Specifically, it revealed that dynamic walking patterns functionally characterize patients. The results are worth considering when assessing functional performance related to the progression of the disease at the site.
The purposes of this study were to develop a model for university foodservices and to provide management strategies for reducing costs, and increasing productivity and customer satisfaction. The results of this study were as follows : 1) The demands in university food services varied depending on the time series. A fixed pattern was discovered for specific times of the month and semesters. The demand tended to constantly decrease from the beginning of a specific semester to the end, from March to June and from September to December. Moreover, the demand was higher during the first semester than the second semester, within school term than during vacation periods, and during the summer vacation than the winter. 2) Pearson's simple correlation was done between actual customer demand and the factors relating to forecasting the demand. There was a high level of correlation between the actual demand and the demand that had occurred in the previous weeks. 3) By applying the stepwise multiple linear regression analysis to two different university food services providing multiple menu items, a model was developed in terms of four different time series(first semester, second semester, summer vacation, and winter vacation). Customer preference for specific menu items was found to be the most important factor to be considered in forecasting the demand.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.7
/
pp.173-181
/
2019
The purpose of this study was to identify the effects of gender role conflicts, professional nursing value on career preparation behaviors of male nursing university student. Data were collected from 127 male nursing university student in grade 2-4 by using structured questionnaires from July 1 to November 30, 2018. The collected data were analyzed by descriptive statistics, independent t-test, ANOVA, Pearson's correlation coefficients and stepwise multiple regression by using SPSS Win 24.0 program. Multiple regression analysis showed that the predictors of career preparation behaviors were professional nursing values(${\beta}=0.28$, p=.001), satisfaction with major (${\beta}=0.23$, p=.006), club(${\beta}=.19$, p=.020) and the regression equation explained 20.8% of career preparation behaviors. Based on the results of this study, it is necessary to provide career educational programs considering according to the academic year of male nursing students and to develop educational programs to improve the nursing professionalism of male nursing students.
KSCE Journal of Civil and Environmental Engineering Research
/
v.32
no.1B
/
pp.9-20
/
2012
Recently to overcome limitations of conceptual, hydrological and physics based models for flood stage forecasting, multiple linear regression model as one of data-driven models have been widely adopted for forecasting flood streamflow(stage). The objectives of this study are to compare performance of different multiple linear regression models according to regression coefficient estimation methods and determine most effective multiple linear regression flood stage forecasting models. To do this, the time scale was determined through the autocorrelation analysis of input data and different flood stage forecasting models developed using regression coefficient estimation methods such as LS(least square), WLS(weighted least square), SPW(stepwise) was applied to flood events in Jungrang stream. To evaluate performance of established models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient (NSEC), mean absolute error (MAE), adjusted coefficient of determination($R^{*2}$). The results show that the flood stage forecasting model using SPW(stepwise) parameter estimation can carry out the river flood stage prediction better in comparison with others, and the flood stage forecasting model using LS(least square) parameter estimation is also found to be slightly better than the flood stage forecasting model using WLS(weighted least square) parameter estimation.
Water consumption is strongly affected by numerous factors, such as population, climatic, geographic, and socio-economic factors. Therefore, the implementation of a reliable predictive model of water consumption pattern is challenging task. This study investigates the performance of predictive models based on multi-layer perceptron (MLP), multiple linear regression (MLR), and support vector regression (SVR). To understand the significant factors affecting water consumption, the stepwise regression (SW) procedure is used in MLR to obtain suitable variables. Then, this study also implements three predictive models based on these significant variables (e.g., SWMLR, SWMLP, and SWSVR). Annual data of water consumption in Thailand during 2006 - 2015 were compiled and categorized by provinces and distributors. By comparing the predictive performance of models with all variables, the results demonstrate that the MLP models outperformed the MLR and SVR models. As compared to the models with selected variables, the predictive capability of SWMLP was superior to SWMLR and SWSVR. Therefore, the SWMLP still provided satisfactory results with the minimum number of explanatory variables which in turn reduced the computation time and other resources required while performing the predictive task. It can be concluded that the MLP exhibited the best result and can be utilized as a reliable water demand predictive model for both of all variables and selected variables cases. These findings support important implications and serve as a feasible water consumption predictive model and can be used for water resources management to produce sufficient tap water to meet the demand in each province of Thailand.
The changing trend of longevity from 1955 through 1985 and its interprovincal variation were studied with longevity rate as indicator. In order to detect the affecting factors of longevity rate, eleven urbanalizational, geographic-environmental, demographic and social-economic variables were employed to carry out multiple stepwise regression analysis. The data used for this study were from Population Census Reports 1955-1985 published by EPB and Year book of Public Health and Social Statistics 1986 published by Ministry of Health and Social Affairs and other reference. Subsequent to that longevity rate decreased during 1950's it has increased continuously by the yeat of 1980's. This trend was especially remarkable in the south area and the GIRI mountain area in Korea. The stepwise regression analysis shows that the longevity rates were significantly associated with the independent variables, and the dependent variables explained at the level of 93.7percent-99.9 percent. Longevity is a reflection of the demographic and socio-economic, environmental and health resourses factor etc., longevity problems cannot be dealt with in isolation. The possible research and services which could be provided by government will be discuss.
Objectives: The purpose of this study was to investigate the relationship between Korean lifestyle characteristics and health status and to identify the variables influencing health in Korea. Methods: A cross-sectional descriptive correlational design was used to explore the lifestyle characteristics and health status of 397 Korean adults. Correlational analysis calculated the correlation between lifestyle and health status. To examine the relationship among demographic characteristics, lifestyle, and health status we used the t-test and one-way ANOVA. Stepwise multiple regression was conducted to examine the significant predictors of general health among subjects. Results: Positive correlations were seen between general health (GH) and the overall score and subscales of the Lifestyle. The stepwise regression model showed that vitality (VA), body pain (BP), nutrition, and occupation were significant variables influencing general health (GH). Conclusions: These findings provide evidence regarding the lifestyle patterns and healthstatus among Koreans. When planning intervention strategies for this population, exercise and physical activity should be principal focus areas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.