• Title/Summary/Keyword: Steel-tube

Search Result 1,103, Processing Time 0.028 seconds

Nonlinear finite element analysis of Concrete Filled Carbon Tube Columns Using Plasticity Theory (축하중을 받는 콘크리트 충전 탄소섬유튜브 기둥의 소성 이론을 적용한 비선형 유한요소해석)

  • Kim, Heecheul;Seo, Sang Hoon;Lee, Young Hak
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.119-126
    • /
    • 2007
  • In the field of composite structures, the use of carbon tube for the confinement of concrete has been arisen since 1990's. However, experimental and analytical studies were limited to those of reinforced concrete and concrete filled steel tube. The carbon tube provides excellent confinement capabilities for concrete cores, enhancing compressive strength and ductility of concrete significantly. The carbon tube has high tensile strength, light weight, corrosion immunity and high fatigue strength properties. Since carbon fiber is an anisotropic material, carbon tube could be optimized by adjusting the fiber orientation, thickness and the number of different layers. In this study, both experimental and analytical studies of axial and lateral behavior of full-scale CFCT (Concrete Filled Carbon Tube) columns subjected to monotonic axial load were carried out using Drucker-Prager theory. And, based on comparison results between experiment results and analytical results, k factor estimation was proposed for effective analysis.

Experimental performance investigation of compound parabolic cavity receiver having single absorber tube

  • Omar Al-Nabhani;Saud Al-Kalbani;Azzam Al-Alawi;Afzal Husain
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • The current study presents experimental research on a parabolic trough collector with tube and cavity receivers. The primary concentrating parabolic reflector is designed for an aperture area of 2×2 m2 with mirror-polished stainless steel sheet reflectors. The cavity receiver consists of a compound parabolic secondary reflector and a copper tube. Both the conventional tube receiver and the cavity receiver tube are coated with black powder. The experiments are carried out to compare the efficiency of the cavity receiver with the tube receiver for fluid temperature rise, thermal efficiency, and overall losses. The experiments showed significantly higher fluid temperature rise and overall efficiency and lower thermal losses for the cavity receiver compared to the tube receiver within the parameters explored in this study.

Axial Load Performance of Circular CFT Columns with Concrete Encasement (콘크리트피복 원형충전강관 기둥의 압축성능)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • An experimental study was performed to investigate the axial-flexural load-carrying capacity of concrete-encased and-filled steel tube (CEFT) columns. To restrain local buckling of longitudinal bars and to prevent premature failure of the thin concrete encasement, the use of U-cross ties was proposed. Five eccentrically loaded columns were tested by monotonic compression. The test parameters were axial-load eccentricity, spacing of ties, and the use of concrete encasement. Although early cracking occurred in the thin concrete encasement, the maximum axial loads of the CEFT specimens generally agreed with the strengths predicted considering the full contribution of the concrete encasement. Further, due to the effect of the circular steel tube, the CEFT columns exhibited significant ductility. The applicability of current design codes to the CEFT columns was evaluated in terms of axial-flexural strength and flexural stiffness.

Structural Behavior of Welded Built-up Square CFT Column to Beam Connections with External Diaphragm (용접조립 각형 CFT 기둥-보 외다이아프램 접합부의 구조 거동)

  • Lee, Seong Hui;Kim, Young Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Existing tubes for concrete filled tubular structure are made through welding of four plates irrespective, but the production performance is poor and special welding technique is needed to weld the internal or through diaphragm. Accordingly, We developed a welded built-up square steel tube having a welding lines and a stiffeners at location out of stress concentration. The welded built-up square steel tube occurred a interference with stiffeners at the internal or through diaphragm, therefore researches of a external diaphragm for welded built-up square CFT column connections are needed for the purpose of avoidance of a interfere with stiffeners. In this study we suggest a design formulation for external diaphragm of the welded built-up square CFT external diaphragm connections. Four specimens were manufactured for a experimental test, then we analyzed the behaviors of the specimens.

Clarification of the Thermal Properties of Intumescent Paint and Suggestion of the Required Fire Protection Thickness for Steel and Composite columns (철골 및 합성기둥 내화성능 확보를 위한 내화페인트 열적 물성치 규명과 소요두께 제안)

  • Kim, Sun-Hee;Ok, Chi Yeol;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • Other countries(USA, Europe) have performed the fire resistance design of buildings by the alternative performance design methods, which are based on fire engineering theories. However, in Korea, the process on the alternative fire resistance performance design has only suggested without any applications for real steel structures. Therefore, In the case of steel structures stagnant research on refractory measures face difficulties in introducing fire resistance design. In this study, first of all, Intumescent paint was analyze the thermal properties(thermal conductivity, specific heat and density). In Sequence, using the section factor by H-standard section propose of section concrete filled steel tube and hollow. finally presents a reasonable thickness Intumescent paint takes time to target performance of the proposed cross-section steel tube.

Ductility Capacity for Concrete Filled Steel Circular Tubes Reinforced by Carbon Fiber Sheets(CFSs) (탄소섬유쉬트로 보강된 콘크리트충전 원형강관기둥의 연성능력)

  • Park, Jai-Woo;Hong, Young-Kyun;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.185-195
    • /
    • 2010
  • This paper presents the experiment results for a CFT column confined by carbon fiber sheets(CFSs) under an axial load. Nine specimens were constructed and axial compression tests were conducted. The main experiment parameters were diameter-thickness ratio(D/t), reinforcing CFSa, and the attachment of a cushion gap between surface of steel tube and CFSs. The load-displacement curves of the specimens were obtained from the compression tests. Finally, it was concluded that the CFT column with a gap had grater ductility capacity improvement that the CFT column confined by CFSs.

Structural Performance Evaluation of Buckling-Restrained Braces Made of High-Strength Steels (고강도강 비좌굴 가새의 구조성능 평가)

  • Park, Man Woo;Ju, Young Kyu;Kim, Myeong Han;Kim, Ji Young;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.33-42
    • /
    • 2008
  • Buckling-Restrained Braces (BRB) has been developed to inhibit buckling and exhibit stable behavior underboth tensile and compresive cycles. In this study, an experime nt has been conducted by using the strength of its members and loading protocols as parameters to evaluate the structural performance of BRB (without in-filed concrete). Specimens are composed of an inner core and an outer tube with diferent steel strengths. When high-strength steels were used as iner cores, the ductility of BRB decreased, and the requirements (Cumulative Plastic Ductility) of the AISC Seismic Provisions were not satisfied. however, when high-strength steels were used as inner cores instead of conventional strength stel cores, the maximum capacity increased significantly and displayed similar performance in total energy dissipation.

Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns

  • Ren, Qing-Xin;Hou, Chao;Lam, Dennis;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.667-686
    • /
    • 2014
  • Tapered concrete filled double skin steel tubular (CFDST) columns have been used in China for structures such as electricity transmission towers. In practice, the bearing capacity related to the connection details on the top of the column is not fully understood. In this paper, the experimental behaviour of tapered CFDST stub columns subjected to axial partial compression is reported, sixteen specimens with top endplate and ten specimens without top endplate were tested. The test parameters included: (1) tapered angle, (2) top endplate thickness, and (3) partial compression area ratio. Test results show that the tapered CFDST stub columns under axial partial compression behaved in a ductile manner. The axial partial compressive behaviour and the failure modes of the tapered CFDST stub columns were significantly influenced by the parameters investigated. Finally, a simple formula for predicting the cross-sectional capacity of the tapered CFDST sections under axial partial compression is proposed.

Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model

  • Tran, Viet-Linh;Jang, Yun;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.319-335
    • /
    • 2021
  • This study proposes a new and highly-accurate artificial intelligence model, namely ANN-IP, which combines an interior-point (IP) algorithm and artificial neural network (ANN), to improve the axial compression capacity prediction of elliptical concrete-filled steel tubular (CFST) columns. For this purpose, 145 tests of elliptical CFST columns extracted from the literature are used to develop the ANN-IP model. In this regard, axial compression capacity is considered as a function of the column length, the major axis diameter, the minor axis diameter, the thickness of the steel tube, the yield strength of the steel tube, and the compressive strength of concrete. The performance of the ANN-IP model is compared with the ANN-LM model, which uses the robust Levenberg-Marquardt (LM) algorithm to train the ANN model. The comparative results show that the ANN-IP model obtains more magnificent precision (R2 = 0.983, RMSE = 59.963 kN, a20 - index = 0.979) than the ANN-LM model (R2 = 0.938, RMSE = 116.634 kN, a20 - index = 0.890). Finally, a new Graphical User Interface (GUI) tool is developed to use the ANN-IP model for the practical design. In conclusion, this study reveals that the proposed ANN-IP model can properly predict the axial compression capacity of elliptical CFST columns and eliminate the need for conducting costly experiments to some extent.

Study and design of assembled CFDST column-beam connections considering column wall failure

  • Guo, Lei;Wang, Jingfeng;Yang, T.Y.;Wang, Wanqian;Zhan, Binggen
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.201-213
    • /
    • 2021
  • Currently, there is a lack of research in the design approach to avoid column wall failure in the concrete filled double skin steel tubular (CFDST) column-beam connections. In this paper, a finite element model has been developed and verified by available experimental data to analyze the failure mechanism of CFDST column-beam connections. Various finite element models with different column hollow ratios (χ) were established. The simulation result revealed that with increasing χ the failure mode gradually changed from yielding of end plate, to local failure of the column wall. Detailed parametric analyses were performed to study the failure mechanism of column wall for the CFDST column-beam connection, in which the strength of sandwiched concrete and steel tube and thickness of steel tube were incorporated. An analytical model was proposed to predict the moment resistance of the assembled connection considering the failure of column wall. The simulation results indicate that the proposed analytical model can provided a conservative prediction of the moment resistance. Finally, an upper bound value of χ was recommend to avoid column wall failure for CFDST column-beam connections.