DOI QR코드

DOI QR Code

Axial Load Performance of Circular CFT Columns with Concrete Encasement

콘크리트피복 원형충전강관 기둥의 압축성능

  • Lee, Ho Jun (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Park, Hong Gun (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Choi, In Rak (Building Structure Research Group, POSCO Steel Solution Center)
  • Received : 2015.08.14
  • Accepted : 2015.12.02
  • Published : 2015.12.27

Abstract

An experimental study was performed to investigate the axial-flexural load-carrying capacity of concrete-encased and-filled steel tube (CEFT) columns. To restrain local buckling of longitudinal bars and to prevent premature failure of the thin concrete encasement, the use of U-cross ties was proposed. Five eccentrically loaded columns were tested by monotonic compression. The test parameters were axial-load eccentricity, spacing of ties, and the use of concrete encasement. Although early cracking occurred in the thin concrete encasement, the maximum axial loads of the CEFT specimens generally agreed with the strengths predicted considering the full contribution of the concrete encasement. Further, due to the effect of the circular steel tube, the CEFT columns exhibited significant ductility. The applicability of current design codes to the CEFT columns was evaluated in terms of axial-flexural strength and flexural stiffness.

콘크리트피복 충전강관의 휨-압축 성능을 평가하기 위한 편심압축실험을 수행하였다. 기둥 주철근의 국부좌굴을 구속하고 콘크리트피복의 조기파괴를 방지하기 위하여 U형 띠철근 상세를 제안하였다. 주요 실험변수는 축하중 편심거리, 띠철근 간격, 그리고 콘크리트피복 여부이다. 실험결과 얇은 콘크리트피복에 수직균열이 조기에 발생하였지만 실험체의 최대강도는 콘크리트 피복의 기여도를 고려한 예측강도를 만족하였다. 또한, 내부 원형강관으로 인하여 제안된 콘크리트피복 충전강관은 우수한 변형능력을 나타냈다. 실험체의 휨-압축 강도 및 휨강성을 현행 설계기준과 비교하여 분석하였다.

Keywords

References

  1. 임우영, 박홍근, 오정근, 김창수(2014) 현장타설 콘크리트채움 중공 PC기둥의 내진성능, 한국콘크리트학회논문집, 한국콘크리트학회, 제26권, 제4호, pp.35-46. Im, W.Y., Park, H.G., Oh, J.K., and Kim, C.S. (2014) Seismic Resistance of Cast-In-Place Concrete-Filled Hollow PC Columns, Journal of the Korea Concrete Institute, KCI, Vol.26, No.4, pp.35-46 (in Korean).
  2. 박홍근, 이호준, 박성순, 김성배(2014) 콘크리트피복충전각형강관 기둥-보 접합부의 주기하중 실험, 한국강구조학회논문집, 한국강구조학회, 제26권, 제1호, pp.55-68. Park, H.G., Lee, H.J., Park, S.S., and Kim, S.B. (2014) Cyclic Loading Test for Beam-to-Column Connections of Concrete Encased CFT Column, Journal of Korean Society of Steel Construction, KSSC, Vol.26, No.1, pp.55-68 (in Korean).
  3. Park, H.G., Lee, H.J.. Choi, I.R., Kim, S.B., and Park, S.S. (2015) Concrete-Filled Steel Tube Columns Encased with Thin Precast Concrete, J. Struct. Eng., ASCE (on-line published).
  4. Xu, L. and Liu, Y.B. (2013) Concrete Filled Steel Tube Reinforced Concrete (CFSTRC) Columns Subjected to ISO-834 Standard Fire: Experiment, Advances in Structural Engineering, Vol.16, No.7, pp.1263-1282. https://doi.org/10.1260/1369-4332.16.7.1263
  5. Matsui, C., Tsuda, K., and Mori, T. (1998) Limiting Width (Diameter)-Thickness Ratio of Tubes of Composite Steel Tube and Concrete Columns with Encased Type Section, J. Struct. Constr. Eng., AIJ, Vol.503, pp.157-163 (in Japanese).
  6. Nakamura, Y., Matsuo, A., and Kamiura, K. (1999) Ultimate Strength and Plastic Deformation Capacity of CFT Columns with Covering RC Considering Material Combination, AIJ J. Technol. Des., AIJ, No.7, pp.39-44 (in Japanese).
  7. Ueura, K., Nakamura, Y., and Matsuo, A. (1999) Ultimate Strength and Plastic Deformation Capacity of CFT Columns with Covering RC Using High-Strength Materials, Res. Rep. Chuugoku Branch, AIJ, Vol.22, pp.189-192 (in Japanese).
  8. Han L.H., Liao, F.Y., Tao, Z., and Hong, Z. (2009) Performance of Concrete Filled Steel Tube Reinforced Concrete Columns Subjected to Cyclic Bending, J. Constr. Steel Res., ELSEVIER, Vol.65, No.8, pp.1607-1616. https://doi.org/10.1016/j.jcsr.2009.03.013
  9. AIJ(Architectural Institute of Japan) (2014) Standard for Structural Calculation of Steel Reinforced Concrete Structures, Tokyo (in Japanese).
  10. AISC(2010) Specification for Structural Steel Building, ANSI/AISC 360-10, Chicago.
  11. Park, R. (1988) Ductility Evaluation from Laboratory and Analytical Testing, Proc., 9th World Conf. on Earthquake Engineering, Vol.8, IAEE, Tokyo, pp.605-616.
  12. Fujimoto, T., Mukai, A., Nishiyama, I., and Sakino, K. (2004) Behavior of Eccentrically Loaded Concrete-Filled Steel Tubular Columns, J. Struct. Eng., ASCE, Vol.130, No.2, pp.203-212. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(203)
  13. Cusson, D. and Paultre, P. (1995) Stress-Strain Model for Confined High-Strength Concrete, J. Struct. Eng., ASCE, Vol.121, No.3, pp.468-477. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(468)
  14. Legeron, F. and Paultre, P. (2003) Uniaxial Confinement Model for Normal-and High-Strength Concrete Columns, J. Struct. Eng., ASCE, Vol.129, No.2, pp.241-252. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(241)
  15. Sheikh, S.A., Shah, D.V., and Khoury, S.S. (1994) Confinement of High-Strength Concrete Columns, ACI Struct. J., Vol.91, No.1, pp.100-111.
  16. Kim, C.S., Park, H.G., Chung, K.S., and Choi, I.R. (2014) Eccentric Axial Load Testing for Concrete-Encased Steel Columns Using 800 MPa Steel and 100 MPa Concrete, J. Struct. Eng., ASCE, Vol.138, No.8, pp.1019-1031.
  17. Chen, C.C. and Lin, N.J. (2006) Analytical Model for Predicting Axial Capacity and Behavior of Concrete Encased Steel Composite Stub Columns, J. Constr. Steel Res., ELSEVIER, Vol.62, No.5, pp.424-433. https://doi.org/10.1016/j.jcsr.2005.04.021
  18. Morino, S., Matsui, C., and Yoshikai, S. (1986) Local Buckling of Steel Elements in Concrete Encased Columns, Proc., Pacific Struct. Steel Conf., PSSC, Auckland, New Zealand, Vol.2, pp.319-335.
  19. CEN(European Committee for Standardization) (2004) Design of Composite Steel and Concrete Structures, Eurocode 4, Brussels.
  20. ACI(American Concrete Institute) (2014) Building Code Requirements for Structural Concrete, ACI 318-14, Farmington Hills, MI.
  21. Mirza, S.A. and Tikka, T.K. (1999) Flexural Stiffness of Composite Columns Subjected to Major Axis Bending, ACI Struct. J., Vol.96, No.1, pp.19-28.

Cited by

  1. 콘크리트 충전 원형 강관을 이용한 터널강지보 합성부재의 휨거동 평가 vol.29, pp.5, 2015, https://doi.org/10.7781/kjoss.2017.29.5.353
  2. 콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험 vol.29, pp.6, 2015, https://doi.org/10.7781/kjoss.2017.29.6.411