• Title/Summary/Keyword: Steel Sheet

Search Result 1,092, Processing Time 0.024 seconds

A Study on Vibratory Behavior of Steel Sheet Pile Installed in Sand Ground (모래지반에 대한 강널말뚝의 진통항타거동 연구)

  • Lee, Seung-Hyun;Lee, Jong-Ku;Yoo, Wan-Kyu;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.79-90
    • /
    • 2007
  • Behaviors of instrumented steel sheet piles which are installed in sand ground by vibratory hammer were investigated. Especially, stresses acting on the pile during vibratory driving, efficiency factor which reflects differences between theoretical driving force and actually delivered acting force, justifiability of rigidity of steel sheet pile, dynamic resistance characteristics of soil and penetration characteristics of sheet pile were analysed. According to the field test results it is justifiable that steel sheet pile behaves as a rigid body during vibratory driving. And it can be seen that maximum stress acting on sheet pile section is far less than tensile strength of the material. Value of the maximum section force at sheet pile head was 72% of that estimated from theoretical equation. Magnitudes of displacement amplitudes computed from displacement-time history curve corresponding to four penetration depths were in the range of 16 $\sim$ 75% of that specified by manufacturer.

Effects of Zinc and Aluminum Hot-dip Galvanized Sheet Steel on the Gill and Hepatopancreas of the Abalone Haliotis discus hannai (아연 및 알루미늄 용융도금 처리된 강판이 북방전복(Haliotis discus hannai)의 아가미와 간췌장에 미치는 영향)

  • Lee, Chi Hoon;Park, Jun Young;Lee, Young Don
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.388-395
    • /
    • 2017
  • We investigated the toxicity of zinc and aluminum hot-dip galvanized sheet steel to abalone Haliotis discus hannai via changes in the gill and hepatopancreas using histological and transmission electron microscopy analysis. Experimental groups were composed of one control and four exposure conditions (direct or indirect exposure to zinc and aluminum hot-dip galvanized sheet steel). In the control group, aluminum exposure groups (direct and indirect), and indirect zinc exposure group, abalone mortality was not observed until the end of the experiment, and no histopathological changes were observed in the gill and hepatopancreas. However, the direct zinc exposure group exhibited 100% mortality. Ultrastructural analysis of the cytoplasm of ciliated and microvilli-bearing epithelial cells from gill filaments revealed electron-dense vesicles near the cell membrane and disruption of the nuclear membrane. We also observed swollen mitochondria and a loss of mitochondrial cristae. The hepatopancreas showed similar changes, and we detected highly electron-dense particles within the vesicles. These results suggest that abalone exposed directly to zinc hot-dip galvanized sheet steel experience acute toxicity, causing damage to cell organelles in the gill and hepatopancreas and, finally, inducing mortality.

An ionization Chamber for a Steel Sheet Thickness Measurement

  • Kim, Han-Soo;Park, Se-Hwa;Kim, Yong-Kyun;Ha, Jang-Ho;Cho, Seung-Yeon
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.149-153
    • /
    • 2006
  • An ionization chamber is still widely used in many fields by virtue of its' simple operational characteristics and the possibility of its' various shapes. A parallel type of an ionization chamber for a steel sheet thickness measurement was designed and fabricated. High pure xenon gas, which was pressurized up to 6 atm, was chosen as a filling gas to increase the current response and sensitivity for a radiation. A high pressure gas system was also constructed. The active volume and the incident window size of the fabricated ionization chamber were $30\;cm^3\;and\;12\;cm^2$, respectively. Preliminary tests with a 25 mCi $^{241}Am$ gamma-ray source and evaluation tests in a standard X-ray field were performed. The optimal operation voltage was set from the results of the collection efficiency calculation by using an experimental two-voltage method. Linearity for a variation of the steel sheet thickness, which is the most important factor for an application during a steel sheet thickness measurement, was 0.989 in this study.

A New Algorithm of B-waveform Control for the Measurement of Two-dimensional Magnetic Properties of Electrical Steel Sheets using Single Sheet Tester (SST를 이용한 전기강판의 2차원 자기특성 측정을 위한 새로운 자속밀도 파형 제어법)

  • Eum, Young-Hwan;Yoon, Hee-Sung;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1167-1174
    • /
    • 2008
  • The measurement of two-dimensional magnetic properties of electrical steel sheet using single sheet tester (SST) requires to control the B-waveform as sinusoidal. The SST electric circuit, in general, has inductance, and this makes the phase lag in electric current. For this reason, the induced voltages of H- or B-coil may have phase difference from the exciting voltage. In this paper, a new algorithm is developed to compensate the phase difference and makes the B-waveform control efficient. The developed algorithm experimentally calculates the phase difference based on the measured waveform of the induced voltage for the magnetic field intensity along transverse direction. By using the proposed algorithm, the two-dimensional magnetic properties of grain-orientated electrical steel sheet (30PG110) is measured up to 2T. By comparing the measured B- and H-waveforms, the effectiveness of the proposed algorithm is proven.

A Case study of steel sheet pile (강널말뚝을 이용한 국내.외 시공 사례)

  • 여병철;김광일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.111-118
    • /
    • 1994
  • The use of steel sheet pile walls as barrier walls have the temporary for coffer dam, retaining wall in excavation, etc., but also permanent of semi-permanent for harbor construction, containment systems, vertical barrier systems for waste disposal (landfill) or subway in excavarion. In all these applicaions the resistance of the structure to seepage plays an important role. Also the stability and longevity of the construction, the possibility of permanent control and survey make the steel sheet pile wall a nearly perfect vertical barrier from a technical and economical point of view.

  • PDF

The Evaluation of Fatigue Life for Multi-lap Spot Weldment of Automobile Steel Sheet Using DCPDM (DCPDM에 의한 자동차용 다층 점용접물의 피로수명 평가)

  • Kim, Hoe-Hyeon;Park, Jeong-Hun;Kim, Eun-Seong;Baek, Seung-Se;Gwon, Il-Hyeon;Yu, Hyo-Seon;Yang, Seong-Mo
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.247-249
    • /
    • 2005
  • Evaluation and prediction of fatigue crack initiation life in EZNCEN(Galvanized steel sheet) and HS40R(High strength steel sheet) tensile-shear spot weldment were studied by using DCPDM(DC Potential Drop Method)

  • PDF

Prediction of Recrystallization Behaviors in Steel Sheet during Hot Rolling Process (열간압연 중 발생하는 강판재 내의 재결정 거동 예측)

  • Lee, Jung-Seo;Park, Jong-Jin
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.150-157
    • /
    • 1998
  • Recently the SPPC technology is being developed in steel rolling industries for the purpose of enhancing mechanical properties of rolled sheets. The technology is to produce steel sheets with finer and more uniformly distributed grains by prediction of recrystallization behaviors and on-line control of rolling parameters during hot rolling process. In this study a finish rolling process was analyzed by a three-dimensional rigid-thermoviscoplastic finite element method and recrystallization behaviors of several locations in the sheet were predicted by Sellars equations. As a result it was found that the initial grain size of 84 ${\mu}m$ became $21-23\;{\mu}m\;20-22{\mu}m\;and\;18-20{\mu}m$ at front middle and end portions of the sheet respectively. It was also found that variations of the grain size became $$0.6{\sim}2{\mu}m\;and\;10{\mu}\mum$$ in thickness and width directions respectively.

  • PDF

The Arc Brazing by Variable Polarity AC Pulse MIG Welding Machine (극성가변 AC 펄스 MIG용접기를 이용한 아크 브레이징)

  • 조상명;공현상
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.56-62
    • /
    • 2003
  • MIG brazing is used for many parts without melting base metal because of high productivity. Pulsed MIG brazing can be used to further reduce heat input and to improve the process stability. However, a significant amount of zinc in galvanized sheet steel is burned off in the area of brazes. Therefore, the brazing method to reduce the heat input is needed. In the brazing for galvanized sheet steel, variable polarity AC pulse MIG arc brazing can be applied to more decrease the heat input by setting EN-ratio adequately. In this research, we studied for the variable polarity AC pulse MIG arc brazing to decrease the heat input by using ERCuSi-A wire. As the result of increasing EN-ratio, melting ratio of base metal and burning off of zinc were reduced in galvanized sheet steel.

Development of a Crop Drop Detection System for Heated Rolling Process of Steel Mill (열간압연 공정을 위한 철편(鐵片)검출 시스템 개발)

  • Kim, Jong-Chul;Kwon, Tai-Gil;Han, Min-Hong
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.248-257
    • /
    • 2003
  • In a heated rolling process of a steel mill where steel plates are pressed to a sheet coil by spreading and expanding, an irregularly-shaped head portion as well as a tail portion of the sheet coil need to be cropped. Any crop which is not clearly cut and separated from the sheet coil may cause critical damages to the facilities of the following processes. As the cropping process is performed very fast, human eyes are not proper for continuous monitoring of the cropping process. To solve this problem, we have developed a machine-vision based crop-drop detection system. The system also measures lengths of major and minor axes for the crops and thereby determines the proper crop size to minimize steel sheet losses.

Determination of Mechanical Properties for Coating Layer of Galvannealed Sheet Steel using Nano-indentation and FEM (나노인덴테이션 시험과 유한요소해석을 이용한 합금화 온도별 GA강판의 코팅층 체적 거동 결정)

  • Jeon S. J.;Lee J. M.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.389-392
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel(GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken Into account and studied by comparing with the temperature variation on annealing in this study. To clarify the effect of surface features in the mechanical properties of GA, the several tests such as nanoindentation and FE-analysis were executed. For this goal use is made of the method of neural networks. The developed neural networks apply also to obtain reliable mechanical properties of the thin films. Load-displacement curve was computed by the analysis procedure and compared with experimental results.

  • PDF