• Title/Summary/Keyword: Static tensile test

Search Result 230, Processing Time 0.025 seconds

Interfacial Properties of Gradient Specimen of CNT-Epoxy Nanocomposites using Micromechanical Technique and Wettability (미세역학적 실험법과 젖음성을 이용한 CNT-에폭시 나노복합재료 경사형 시편의 계면특성)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Gyu
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.8-14
    • /
    • 2009
  • Interfacial evaluation of glass fiber reinforced carbon nanotube (CNT)-epoxy nanocomposite was investigated by micromechanical technique in combination with wettability test. The contact resistance of the CNT-epoxy nanocomposite was measured using a gradient specimen, containing electrical contacts with gradually-increasing spacing. The contact resistance of CNT-epoxy nanocomposites was evaluated by using the two-point method rather than the four-point method. Due to the presence of hydrophobic domains on the heterogeneous surface, the static contact angle of CNT-epoxy nanocomposite was about $120^{\circ}$, which was rather lower than that for super-hydrophobicity. For surface treated-glass fibers, the tensile strength decreased dramatically, whereas the tensile modulus exhibited little change despite the presence of flaws on the etched fiber surface. The interfacial shear strength (IFSS) between the etched glass fiber and the CNT-epoxy nanocomposites increased due to the enhanced surface energy and roughness. As the thermodynamic work of adhesion, $W_a$ increased, both the mechanical IFSS and the apparent modulus increased, which indicated the consistency with each other.

Evaluation for Ultimate Flexural Strength of Steel Composite Girder with High Strength Concrete (고강도 콘크리트 강합성 거더의 극한휨강도 실험 평가)

  • Kim, Woon Hak;Lee, Juwon;Lee, Seokmin
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.796-805
    • /
    • 2020
  • Purpose: A static loading test was performed to evaluate the ultimate flexural strength of a girder in which 80MPa high-strength concrete was synthesized on the compressive flange of the I-shape steel girder. Method: This test is designed and fabricated two types of specimens with different shear-connection specifications, and evaluated their ultimate flexural behavior until reaching the extreme event limit states. In addition, the ultimate strength was evaluated by comparing the test results and the results of the strain compatibility method. Result: By confirming the displacement within 0.02mm as a result of the relative slip measurement, it was verified that the two specimens secured perfect bonding. Therefore, the difference in the shear specification does not have a great effect on the stiffness, and if the specimens are completely synthesized, there is no difference in the behavior until it reaches the extreme-event limit states. Conclusion: The girder to be tested has a working load within the elastic range and meets the usability requirements for allowable deflection. Therefore, even if a part of the casing is subjected to the tensile force at the level of cracking, the deck will first reach the compression failure due to the role of the reinforcing bar.

Optimal Welding condition in Ultrasonic Welding of Ni steel sheet (Ni 박판의 초음파 용착시 최적용착 조건)

  • Seo, Jeong Seok;Park, Dong Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.47-52
    • /
    • 2010
  • Miniaturization and lightweight are increasingly the recent trend in the manufacture of electric appliances and machine parts. So technology of micro joining for joining materials is indispensable. This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and Horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Ni sheet and Ni sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 45% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.

Linear elastic and limit state solutions of beam string structures by the Ritz-method

  • Xue, Weichen;Liu, Sheng
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.67-82
    • /
    • 2010
  • The beam string structure (BSS) has been widely applied in large span roof structures, while no analytical solutions of BSS were derived for it in the existing literature. In the first part of this paper, calculation formulas of displacement and internal forces were obtained by the Ritz-method for the most commonly used arc-shaped BSS under the vertical uniformly distributed load and the prestressing force. Then, the failure mode of BSS was proposed based on the static equilibrium. On condition the structural stability was reliable, BSS under the uniformly distributed load would fail by tensile strength failure of the string, and the beam remained in the elastic or semi-plastic range. On this basis, the limit load of BSS was given in virtue of the elastic solutions. In order to verify the linear elastic and limit state solutions proposed in this paper, three BSS modal were tested and the corresponding elastoplastic large deformation analysis was performed by the ANSYS program. The proposed failure mode of BSS was proved to be correct, and the analytical results for the linear elastic and limit state were in good agreement with the experimental and FEM results.

Mechanical Tenacity Analysis of Moisture Barrier Bags for Semiconductor Packages

  • Kim, Keun-Soo;Kim, Tae-Seong;Min Yoo;Yoo, Hee-Yeoul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • We have been using Moisture Barrier Bags for dry packing of semiconductor packages to prevent moisture from absorbing during shipping. Moisture barrier bag material is required to be waterproof, vapor proof and offer superior ESD (Electro-static discharge) and EMI shielding. Also, the bag should be formed easily to the shape of products for vacuum packing while providing excellent puncture resistance and offer very low gas & moisture permeation. There are some problems like pinholes and punctured bags after sealing and before the surface mount process. This failure may easily result in package pop corn crack during board mounting. The bags should be developed to meet the requirements of excellent electrical and physical properties by means of optimization of their raw material composition and their thickness. This study investigates the performance of moisture barrier bags by characterization of their mechanical endurance, tensile strength and through thermal analysis. By this study, we arrived at a robust material composition (polyester/Aluminate) for better packing.

  • PDF

Development and Durability Evaluation of a Bimaterial Composite Frame by Pultrusion Process (인발성형 공정을 통한 이종재료 복합소재 프레임 개발 및 내구성 평가)

  • Lee, Haksung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • Recently, the growing demand for weight reduction and improved structure durabilityfor commercial vehicles has led to active research into the development and application of suitablecomposite materials. This studysuggests abimaterial composite frame produced by apultrusion process to replace steel frames. We focused on the development of a composite frameconsisting of two types of materialsby mixing anorthotropic material with anisotropic material. The inside layer consisted of an aluminum pipe, and the outside layer was composed of a glass fiber pipe. To determine the strength and failure mechanisms of the composite material, tensile tests, shear tests, and three-point bending tests were conducted, followed by fatigue tests. After static testing, the fatigue tests were conducted at a load frequency of 5 Hz, a stress ratio (R) of 0.1, and an endurance limit of $10^6$ for the S-N curve. The resultsshowed that the failure modes were related to both the core design and the laminating conditions.

A Study of the Mechanical Properties of Patch-Bonded and Riveted Repairs on Cracked Al 6061-T6 alloy Structures

  • Yoon, Young-Ki;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • A comparison of Riveted and bonded repairs, bearing and net tension failures, and Al 6061-T6 plates is presented. The results are then compared with previous papers about bonded repairs on different patch materials and shapes. Aluminum alloys, including Al 6061-T6, have a face-centered-cubic crystal structure. Under normal circumstances, these types of crystal structures do not exhibit cleavage fractures even at very low temperatures. In aluminum-base structures, the cracked plate structures are frequently repaired using mechanical fasteners-either rivets of bolts- even though patch-bonding techniques are applied to repair and reinforce the structure. Static test results indicate that the riveted repairs are affected by the position of the rivers. When using the same size of patch, the bonded repair technique is stronger; the rate of elongation is also increased. Form FEM analysis, it is revealed the origin of patch debonding in patch-bonded structures is the edge of the patch along to the tensile strength.

  • PDF

Numerical simulation of an adobe wall under in-plane loading

  • Nicola, Tarque;Guido, Camata;Humberto, Varum;Enrico, Spacone;Marcial, Blondet
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.627-646
    • /
    • 2014
  • Adobe is one of the oldest construction materials that is still used in many seismic countries, and different construction techniques are found around the world. The adobe material is characterized as a brittle material; it has acceptable compression strength but it has poor performance under tensile and shear loading conditions. Numerical modelling is an alternative approach for studying the nonlinear behaviour of masonry structures such as adobe. The lack of a comprehensive experimental database on the adobe material properties motivated the study developed here. A set of a reference material parameters for the adobe were obtained from a calibration of numerical models based on a quasi-static cyclic in-plane test on full-scale adobe wall representative of the typical Peruvian adobe constructions. The numerical modelling, within the micro and macro modelling approach, lead to a good prediction of the in-plane seismic capacity and of the damage evolution in the adobe wall considered.

Change in Microstructure and Mechanical Properties of Deoxidized Low-Phosphorous Copper Processed by Accumulative Roll-Bonding with Annealing (ARB가공된 인탈산동의 어닐링에 따른 미세조직 및 기계적 특성 변화)

  • Lee, Seong-Hee;Kim, Chun-Su;Kim, Sang-Shik;Han, Seung-Zeon;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.361-365
    • /
    • 2007
  • A deoxidized low-phosphorous copper processed by eight cycles of accumulative roll-bonding (ARB) was annealed at various temperatures ranging from 100 to $400^{\circ}C$. The annealed copper was characterized by transmission electron microscopy (TEM) and tensile & hardness test. TEM observation revealed that the ultrafine grains developed by the ARB still remained up to $350^{\circ}C$, however above $400^{\circ}C$ they were replaced by equiaxed and coarse grains due to an occurrence of the static recrystallization. The hardness of the copper decreased slightly with the annealing temperature up to $350^{\circ}C$, however they dropped largely above $400^{\circ}C$. Annealing characteristics of the copper were compared with those of an oxygen free copper processed by ARB and subsequently annealed.

Structure and Property Modification of Bimodal Molecular Weight Distribution Polyethylene by Electron Beam Irradiation

  • Lee, Sang-Man;Jeon, Hye-Jin;Choi, Sun-Woong;Song, Hyun-Hoon;Nho, Young-Chang;Cho, Kyu-Cheol
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.640-645
    • /
    • 2006
  • Polyethylene of bimodal molecular weight distribution was irradiated with an electron beam. The thermal and mechanical properties were examined by DSC, small and wide angle X-ray scattering and static tensile test according to the crystal morphology of the irradiated samples. The crystal morphology change upon irradiation, as revealed by wide angle X-ray scattering, correlated well with the changes in melting enthalpy, whereas the lamellar thickness and the amorphous gap thickness remained virtually unchanged at irradiation doses up to 500 kGy. Crosslinks in the crystal domains became evident at an energy level of 250 kGy, resulting in reduced crystallinity and crystal size of the (110) and (200) planes. The samples became stiff and brittle with increased irradiation dose, which seem to be more relevant to the amount of cross links than the crystal morphology changes.