Structure and Property Modification of Bimodal Molecular Weight Distribution Polyethylene by Electron Beam Irradiation

  • Published : 2006.12.31

Abstract

Polyethylene of bimodal molecular weight distribution was irradiated with an electron beam. The thermal and mechanical properties were examined by DSC, small and wide angle X-ray scattering and static tensile test according to the crystal morphology of the irradiated samples. The crystal morphology change upon irradiation, as revealed by wide angle X-ray scattering, correlated well with the changes in melting enthalpy, whereas the lamellar thickness and the amorphous gap thickness remained virtually unchanged at irradiation doses up to 500 kGy. Crosslinks in the crystal domains became evident at an energy level of 250 kGy, resulting in reduced crystallinity and crystal size of the (110) and (200) planes. The samples became stiff and brittle with increased irradiation dose, which seem to be more relevant to the amount of cross links than the crystal morphology changes.

Keywords

References

  1. M. Fleissner, Polym. Eng. Sci., 38, 330 (1998) https://doi.org/10.1002/pen.10194
  2. A. Lustiger and R. L. Markham, Polymer, 24, 1647 (1983) https://doi.org/10.1016/0032-3861(83)90187-8
  3. L. L. Bohm, H. F. Enderle, and M. Fleissner, Adv. Mater., 4, 234 (1992) https://doi.org/10.1002/adma.19920040317
  4. L. Woo and C. L. Standford, Radiat. Phys. Chem., 63, 845 (2002) https://doi.org/10.1016/S0969-806X(01)00664-8
  5. Y. Ikada, K. Nakamura, S. Ogata, K. Makino, K. Tajima, E. Endoh, T. Hayashi, S. Fujita, A. Fujisawa, S. Mastlda, and H. Oonisili, J. Polym. Sci., Polym. Chem., 37, 159 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990115)37:2<159::AID-POLA6>3.0.CO;2-G
  6. W. L. Sauer, K. D. Weaver, and N. B. Beals, Biomaterials, 17, 1929 (1996) https://doi.org/10.1016/0142-9612(96)82602-0
  7. V. L. Auslender, A. A. Bryazgin, B. L. Faktorovich, V. A. Gorbunov, E. N. Kokin, M. V. Korobeinokov, G. S. Krainov, A. N. Lukin, S. A. Maximov, V. E. nekhaev, A. D. Panfilov, V. N. Radchenko, V. O. Tkachenko, A. A. Tuvik, and L. A. Voronin, Radiat. Phys. Chem., 63, 613 (2002) https://doi.org/10.1016/S0969-806X(01)00672-7
  8. K. Nakamura, S. Ogata, and Y. Ikada, Biomaterials, 19, 2341 (1998) https://doi.org/10.1016/S0142-9612(98)00150-1
  9. K. Mehta, P. Fuochi, M. Lavalle, and A. Kovacs, Radiat. Phys. Chem., 62, 745 (2002)
  10. M. Takehisa, T. Saito, T. Takahashi, T. Sato, and T. Sato, Radiat. Phys. Chem., 41, 495 (1993)
  11. J. H. Kim, H. N. Cho, S. H. Kim, and J. Y. Kim, Macromol. Res., 12, 53 (2004) https://doi.org/10.1007/BF03218995
  12. S. Y. Nam, Y. C. Nho, and S. H. Hong, Macromol. Res., 12, 219 (2004) https://doi.org/10.1007/BF03218391
  13. L. Pruitt and R. Ranganatann, Mat. Sci. Eng. C-Bio. S, 3, 91 (1995) https://doi.org/10.1016/0928-4931(95)00106-9
  14. V. Premnath, A. Bellare, E. W. Merrill, M. Jasty, and W. H. Harris, Polymer, 40, 2215 (1999) https://doi.org/10.1016/S0032-3861(98)00438-8
  15. J. Bolze, J. Kim, J.-Y. Huang, S. Rah, H. S. Youn, B. Lee, T. J. Shin, and M. Ree, Macromol. Res., 10, 2 (2002) https://doi.org/10.1007/BF03218282
  16. M. Ree and I. S. Ko, Phys. High Tech.(Korea), 14, 2 (2005)
  17. R. J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford Univ. Press, New York, 2000
  18. W. Ruland, Colloid Polym. Sci., 255, 417 (1977) https://doi.org/10.1007/BF01536457
  19. W.-T. Chuang, U.-S. Jeng, H.-S. Sheu, and P.-D. Hong, Macromol. Res., 14, 45 (2006) https://doi.org/10.1007/BF03219067
  20. U. W. Gedde, Polymer Physics, Chapman & Hall, London, 1995
  21. G. Lewis, Biomaterials, 22, 371 (2001) https://doi.org/10.1016/S0142-9612(00)00195-2
  22. M. Dole, Radiation Chemistry of Macromolecules, Academic Press, New York, 1972
  23. N. M. Stark and L. M. Matuana, Polym. Degrad. Stabil., 86, 1 (2004) https://doi.org/10.1016/j.polymdegradstab.2003.11.002
  24. M. Goldman, R. Gribsky, G. G. Long, and L. Pruitt, Polym. Degrad. Stabil., 62, 97 (1998) https://doi.org/10.1016/S0141-3910(97)00265-6
  25. G. Lewis, Biomaterials, 22, 371 (2001) https://doi.org/10.1016/S0142-9612(00)00195-2
  26. V. Premnath, A. Bellare, E. W. Merrill, M. Jasty, and W. H. Harris, Polymer, 40, 2215 (1999) https://doi.org/10.1016/S0032-3861(98)00438-8
  27. P. H. Kang and Y. C. Nho, Radiat. Phys. Chem., 60, 79 (2001) https://doi.org/10.1016/S0969-806X(00)00333-9
  28. A. Rivation, D. Lalande, and J. -L. Gardette, Nucl. Instrum. Meth. B, 222, 187 (2004) https://doi.org/10.1016/j.nimb.2004.02.012
  29. A. Valenza, S. Piccaroli, and G. Spadaro, Polymer, 40, 835 (1999) https://doi.org/10.1016/S0032-3861(98)00294-8
  30. Q. Yu and S. Zhu, Polymer, 40, 2961 (1999) https://doi.org/10.1016/S0032-3861(98)00519-9
  31. K. Nishida, T. Konishi, T. Kanaya, and K. Kaji, Polymer, 45, 1433 (2004) https://doi.org/10.1016/j.polymer.2003.12.042
  32. S. M. Lee, S. W. Choi, Y. C. Nho, and H. H. Song, J. Polym. Sci., Polym. Phys., 43, 3019 (2005) https://doi.org/10.1002/polb.20578
  33. Y. Q. Wang and J. Li, Mater. Sci. Eng. A-Struct., 266, 155 (1999) https://doi.org/10.1016/S0921-5093(99)00040-4
  34. T. Ozawa, Polymer, 12, 150 (1971) https://doi.org/10.1016/0032-3861(71)90041-3
  35. J. Scheirs, L. L. Bohm, J. C. Boot, and P. S. Leevers, TRIP, 4, 408 (1996)
  36. P. H. Kang, J. S. Park, and Y. C. Nho, Macromol. Res., 10, 332 (2002) https://doi.org/10.1007/BF03218327
  37. N. G. McCrum, C. P. Buckley, and C. B. Bucknall, Principles of Polymer Engineering, Oxford Science Publications, New York, 1997