DOI QR코드

DOI QR Code

Interfacial Properties of Gradient Specimen of CNT-Epoxy Nanocomposites using Micromechanical Technique and Wettability

미세역학적 실험법과 젖음성을 이용한 CNT-에폭시 나노복합재료 경사형 시편의 계면특성

  • 왕작가 (경상대학교 나노.신소재공학부) ;
  • 공조엘 (경상대학교 나노.신소재공학부) ;
  • 박종만 (경상대학교 나노.신소재공학부) ;
  • 이우일 (서울대학교 기계.항공공학부) ;
  • 박종규 (국방과학연구소)
  • Published : 2009.10.31

Abstract

Interfacial evaluation of glass fiber reinforced carbon nanotube (CNT)-epoxy nanocomposite was investigated by micromechanical technique in combination with wettability test. The contact resistance of the CNT-epoxy nanocomposite was measured using a gradient specimen, containing electrical contacts with gradually-increasing spacing. The contact resistance of CNT-epoxy nanocomposites was evaluated by using the two-point method rather than the four-point method. Due to the presence of hydrophobic domains on the heterogeneous surface, the static contact angle of CNT-epoxy nanocomposite was about $120^{\circ}$, which was rather lower than that for super-hydrophobicity. For surface treated-glass fibers, the tensile strength decreased dramatically, whereas the tensile modulus exhibited little change despite the presence of flaws on the etched fiber surface. The interfacial shear strength (IFSS) between the etched glass fiber and the CNT-epoxy nanocomposites increased due to the enhanced surface energy and roughness. As the thermodynamic work of adhesion, $W_a$ increased, both the mechanical IFSS and the apparent modulus increased, which indicated the consistency with each other.

유리섬유 강화 CNT-에폭시 나노복합재료의 계면특성은 미세역학적 시험법과 젖음성 측정을 통하여 평가하였다. CNT-에폭시 나노복합재료의 접촉저항은 전기적 접촉부가 일정하게 점차적으로 증가하는 경사형 (gradient) 시편으로 측정되었다. CNT-에폭시나노복합재료의 접촉저항은 2-점법 대신에 4-점법을 사용하여 평가하였다. 불균일한 표면에 존재하는 소수성 영역 때문에 CNT-에폭시 나노복합재료의 어떤 부분은 초소수성보다는 다소 낮은 접촉각인 120도를 가졌다. 표면처리된 유리섬유는 에칭된 섬유 표면의 흠이 있지만 인장 강성도는 약간의 변화가 나타나는 반면에, 인장강도는 현저하게 감소하였다. 에칭된 유리섬유와 CNT-에폭시 나노복합재료는 표면 에너지와 거친 정도가 증가함으로써, 계면전단강도가 증가되었다 열역학적 에너지 일인 $W_a$가 증가함에 따라, 기계적 계면전단강도와 겉보기 강성도 모두 상호일치하게 증가를 보여주었다.

Keywords

References

  1. B. G. Lars, H.G. Malte, Wichmann, O. M. Leif, and S Karl, "Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix," Compos Sci Technol, Vol 68, 2008, pp. 1886-1894 https://doi.org/10.1016/j.compscitech.2008.01.001
  2. Z. Q. Shen, S. Bateman, D. Y. Wu, P. McMahon,M Dellolio, and J. Gotama, "The effects of carbon nanotubes on mechanical and thennal properties of woven glass fibre reinforced polyamide-6 nanocomposite," Compos Sci Technol, Vol. 69, 2009, pp. 239-244 https://doi.org/10.1016/j.compscitech.2008.10.017
  3. D. Wei, P. Espindola, T. Lindfors,and C. Kvamstrom, J Heinze, A. Ivaska, "In situ conductance and in situ ATR-FTIR study of poly(N-methylaniline) in aqueous solution," J Electroanal Chem. , Vol. 602, 2007, pp 203-209 https://doi.org/10.1016/j.jelechem.2006.12.017
  4. M. Pagels, J. Heinze, B. Geschke, V. Rang, "A new approach to the mechanism of polymerization of oligovinylthiophene," Electrochim Acta, Vol. 46, 2001 , pp. 3943-3954 https://doi.org/10.1016/S0013-4686(01)00716-2
  5. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C D. Sheraw, J. A. Nichols, and T. N. Jackson, “ Contract resistance in organic thin film transistors," Solid State Electron, Vol. 47, 2003, pp. 297-301 https://doi.org/10.1016/S0038-1101(02)00210-1
  6. S. J. Park, and Y. S. Jang, “ Interfacial characteristics and fracture toughness of electrolytically Ni-plated carbon fiber- reinforced phenolic resin matrix composites," J Coll lnteif Sci, Vol. 237, 2001 , pp. 91-97 https://doi.org/10.1006/jcis.2001.7441
  7. L. Jin, F. Qun, W. H. Chen, K. B. Huang, C. Y. Ling, "Effect of electro-polymer sizing of carbon fiber on mechanical properties of phenolic resin composites," Trans nonferrous Met Soc, Vol. 16, 2006, pp. 457-461 https://doi.org/10.1016/S1003-6326(06)60233-1
  8. 김평기, 장정훈, 김성주, 박종만, 황병선, "미세역학적시험법과 음향방출을 이용한 Jute 및 Hemp 섬유/폴리프로필렌 복합재료의 내구성 및 계면 평가", 한국복합재료학회지, Vol. 20, No. 3, 2007, pp. 55-62
  9. X. Wang, D. D. L. Chung, “ Improving the bond strength between carbon fiber and cement by fiber surface treatment and polymer addition to cement mix," Cem Conc Res, Vol. 26, 1996, pp. 1007-1012 https://doi.org/10.1016/0008-8846(96)00084-1
  10. J. M. Park, S. I. Lee, K W. Kim, and D. J. Yoon, "Interfaci머 properties of electrodeposited carbon fibers/epoxy composites using electro-icromechanical technique and nondestructive evaluation," J Colloid lnteif Sci, Vol. 237, 2001 , pp. 80-90 https://doi.org/10.1006/jcis.2001.7426
  11. T. H. Jung, R V. Subrammian, and V. S. Manoranjan "Prediction of fibre strength at the critical length: a simulation theory and experimental verification for bimodally distributed carbon fibre strengths," J Mater Sci, Vol. 28, 1993, pp. 4489-4496 https://doi.org/10.1007/BF01154961
  12. 박주언, 최낙삼, "복합재료의 계면전단강도를 평가하기 위한 새로운 반구형 미소접합 시험편," 한국복합재료학회지, Vol. 21, No. 2, 2008, pp. 25-30