• Title/Summary/Keyword: State feedback controller

Search Result 677, Processing Time 0.026 seconds

Structure-Control Combined Design with Structure Intensity

  • Park, Jung-Hyen;Kim, Soon-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

  • PDF

Position control of the frictionless positioning device suspended by cone-shaped active magnetic bearings (원추형 자기 베어링 지지 무마찰 구동장치의 위치제어)

  • Jeong, Ho-Seop;Lee, Chong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.181-187
    • /
    • 1996
  • A frictionless positioning device using cone-shaped active magnetic bearings(AMBs) is developed, which is driven by a brushless DC motor equipped with resolver. The cone-shaped AMB feature that the structure is simple and yet the five d.o.f. rotor motion is controlled by four magnet pairs. A linearized dynamic model, which accounts for the relationship between input voltage and output current in the cone-shaped magnet, is developed and the azimuth motion of the frictionless positioning device is modeled as the second order system. The feedback controller is designed by using linear quadratic regulator with integral action optimal control law so that the cone-shaped AMB system is stabilized and the frictionless positioning device gets the zero steady state. It is observed that the linearized dynamic model is adequate and the frictionless positioning device can achieve the tracking accuracy within the sensor resolution.

  • PDF

A Study on the Position Control of an Electro-Hydraulic Servomechanism Using Variable Structure System (가변구조를 이용한 전기-유압서보계의 위치제어에 관한 연구)

  • 허준영;권기수;하석홍;조겸래;이진걸
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.213-220
    • /
    • 1989
  • This paper describes the application of the variable structure control(VSC) concept for the position control of an electro-hydraulic servomotor system. The basic philosopy of VSC is that the structure of the feedback control is altered as the state crosses discontinuity surfaces in the state space with the result that certain desirable properties are achieved. The switching of the control function yields total(or selective) invariance to system parameter variations and disturbances, and closed loop eigen value placement in time-varing and uncertain systems. The control scheme is derived, implemented and tested in the laboratory where analog controller have been used to control the representive servosystem. The control system schematics are given and simple results are shown for illustration. And the results of variable structure system for the electro-hydraulic servomotor were compared to that of the fixed structure system when load disturbance and system parameter variation exists.

Embedded Control System of Segway Robot using Model Based Design (모델기반 설계를 이용한 이륜 도립진자 로봇의 임베디드 제어시스템)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2975-2982
    • /
    • 2010
  • In this paper, embedded control system of segway robot using model based design is presented. Design of control program in embedded system can be implemented simply and easily by model based design method using MATLAB/SIMULINK. Segway robot is consisted of a NXT Mindstorms controller, two DC servo motors, a ultrasonic sensor, a gyro sensor, and a light sensor. It is a unstable nonlinear system and has a control problem of body pitch angle. So controller of segway robot is designed using state feedback LQR control. It is confirmed through design and experiment of controller that the model based design method, that is not depend on target processor, has merits compared with the text based design in aspects such as a program development, an error detection/modify, and an insight of software structure.

Synchronization Techniques for Single-Phase and Three-Phase Grid Connected Inverters using PLL Algorithm (PLL 알고리즘을 사용한 단상 및 3상 계통연계형 인버터의 동기화 기법)

  • Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.309-316
    • /
    • 2011
  • A PLL system has widely used for synchronizing the grid voltage at the grid-connected inverter for supplying power from the PV generation systems. In this paper, a PLL algorithm without both the loop filter and PI controller is suggested for improving the performance of synchronization at the single-phase and three-phase grid connected inverters. In order that the output voltage of a phase detector in the PLL has only a dc voltage, and it approaches to 0 when the synchronization signal is locked to the grid voltage, the feedback signals are determined by using two-phase voltages. After the PLL system with a proportional controller is modelled with the small signal analysis, the stability and steady-state error are investigated. Through the simulation studies and experimental results, the performances of the proposed PLL algorithm are verified.

Fault Diagnosis and Tolerance for Asynchronous Counters with Critical Races Caused by Total Ionizing Dose in Space (우주 방사능 누적에 의한 크리티컬 레이스가 존재하는 비동기 카운터를 위한 고장 탐지 및 극복)

  • Kwak, Seong-Woo;Yang, Jung-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.49-55
    • /
    • 2012
  • Asynchronous counters, where the counter value is changed not by a synchronizing clock but by outer inputs, are used in various modern digital systems such as spaceborne electronics. In this paper, we propose a scheme of fault tolerance for asynchronous counters with critical races caused by total ionizing dose (TID) in space. As a typical design flaw of asynchronous digital circuits, critical races cause an asynchronous circuit to show non-deterministic behavior, i.e., the next stable state of a state transition is not a fixed value but may be any value of a state set. Using the corrective control scheme for asynchronous sequential machines, this paper provides an existence condition and design procedure for a state feedback controller that can invalidate the effect of critical races. We implement the proposed control system in VHDL code and conduct experiments to demonstrate that the proposed control system can overcome critical races.

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation-Part H : Simulation and Experimental Results-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.10-15
    • /
    • 2003
  • This paper presents the digital computer performance evaluations of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover such as the wind turbine using the nodal admittance approach steady-state frequency domain analysis with the experimental results. The three-phase SEIG setup is implemented for small-scale rural renewable energy utilizations. The experimental performance results give a good agreement with those ones obtained from the digital computer simulation. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by a variable speed prime mover employing the static VAR compensator (SVC) circuit composed of the thyristor phase controlled reactor (TCR) and the thyristor switched capacitor(TSC) is designed and considered herein for the wind-turbine driven the power conditioner. To validate the effectiveness of the SVC-based voltage regulator of the terminal voltage of the three-phase SEIG, an inductive load parameter disturbances in stand-alone are applied and characterized in this paper. In the stand-alone power utilization system, the terminal voltage response and thyristor triggering angle response of the TCR are plotted graphically. The simulation and the experimental results prove the effectiveness and validity of the proposed SVC which is controlled by the Pl controller in terms of fast response and high performances of the three-phase SEIG driven directly by the rural renewable energy utilization like a variable-speed prime mover.

Optimal Design of Linear Quadratic Regulator Restrict Maximum Responses of Building Structures Subject to Stochastic Excitation (확률적 가진입력을 받는 건축구조물의 최대응답 제한을 위한 선형이차안정기의 최적설계)

  • 박지훈;황재승;민경원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.37-46
    • /
    • 2001
  • In this research, a controller design method based on optimization is proposed that can satisfy constraints on maximum responses of building structures subject to around excitation modeled by partially stochastic process. The class of controllers to be optimized is restricted to LQR. Weighting matrix on controlled outputs is used as design variable. Objective function, constraint functions and their gradients are computed by the parameterization of control gain with Riccati matrix. Full state feedback controllers designed by proposed optimization method satisfy various design objectives and their necessary maximum control forces are computed for the production of actuator. LQG controllers composed of Kalman filter and LQR designed by proposed method perform well with little deterioration. So it is possible to design output feedback controllers satisfying constraints on various maximum responses of structures.

  • PDF

Development of Map-Based Engine Control Logic for DME Fuel (MAP 기반 DME용 엔진 제어로직 개발)

  • Park, Young-Kug;Chung, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3127-3134
    • /
    • 2013
  • This paper presents the verified results from the examination of the control algorithm, logic composition, and vehicle condition of the engine that has been adapted for DME fuel. It introduces the development process of the control structure and the logic control based on control map and auto-code generation, and finally verifies the reliability and performance of the overall control. The control structure largely consists of the injection control part that implements driver demand into an engine net torque and the air control system part that satisfies characteristics of exhaust gas and power performance. The control logic is designed with feedforward and feedback control for each of its control functions for an enhanced response. Moreover, the control map of the feedforward controller is created by the use of an engine model created by test data of mass product diesel engine, and it was subsequently calibrated in the test process of the engine and vehicle state. A test mode was completed by attaching the developed controller to the vehicle, and a reduction in gas emission is confirmed by the calibration of EGR, VGT, and injection times.

Stabilization Controller Design of a Container Crane for High Productivity in Cargo Handling Using a RCGA (실수코딩유전알고리즘을 이용한 하역생산성 향상용 컨테이너 크레인의 안정화 제어기 설계)

  • Lee, Soo-Young;Ahn, Jong-Kap;Choi, Jae-Jun;Son, Jeong-Ki;Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.515-521
    • /
    • 2007
  • To increase the stevedore efficiency and service level at container terminal, it is essential to reduce working time of container crane which has a bottle neck in the logistic flow of container. The working speed and safety are required to be improved by controlling the movement of the trolley as quick as possible without big overshoot and any residual swing motion of container in the vicinity of target position. This paper presents optimal state feedback control using RCGAs in the case of existing constrained conditions