• Title/Summary/Keyword: Starting System

Search Result 1,522, Processing Time 0.028 seconds

Preliminary Design Procedure of Electric Starting System for Small GasTurbine Engine (소형 가스터빈엔진 전기시동 시스템 기본설계 절차)

  • Lim, Byeung-Jun;Rhee, Dong-Ho;Jun, Yong-Min;Ahn, Iee-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.829-832
    • /
    • 2010
  • For gas turbine engine starting, external power should be supplied with engine to accelerate to suitable rotational speed for air and fuel ignition conditions. Electric starting system for small gas turbine engine has simple system and light weight, so it is generally used for small aircraft. For system analysis of gas turbine engine electric starting system, Characteristics of battery, start motor, engine drag torque should be analyzed and theirs temperature effects should be considered. In this paper, preliminary design procedure of small gas turbine engine electric starting system and major design parameters were described.

  • PDF

Starting Mode Analysis of Flat-type Linear Generator for Free-Piston Engine (Free-Piston 엔진용 평판형 선형 발전기를 이용한 기동모드 해석)

  • Kim, Young-Wook;Lim, Jae-Won;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.966-971
    • /
    • 2008
  • Free-piston engine system is a new type energy converter which uses a linear motion of piston by using linear generator. In free-piston engine system, the piston is not connected to a crank-shaft. The major advantages of free-piston engine system are high efficiency and low mechanical loss from the absence of motion conversion devices. Linear generator of free-piston engine system is used as generator and starting motor. In design step, considering of back-emf and detent force characteristics for generating mode and thrust and control characteristics for starting mode is needed. In this research, generating mode of flat-type linear generator and tubular-type linear generator is analyzed by finite element analysis method and starting mode of both type linear generators is analyzed by using capability curve. Capability curve is plotted from electrical parameters of both type linear generator and motion profile is calculated from mechanical parameters.

A Study on the Improvement of Engine Starting Performance for Gasoline Engine Ignition System using Electronic Control (가솔린관 점화장치의 전자제어에 의한 시동성향상에 관한 연구)

  • 김광조;김남호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.215-221
    • /
    • 1997
  • The ability of the engine starting performance of conventional ignition system being currently used in automobile gasoline engine is investigated, and the method of improving is discussed and experimented. The conventional ignition system cannot obtain high ignited voltage because its current is limited by decreasing of terminal voltage of battery at starting the engine also causes irregularity in the starting engine. This paper shows that problem can be improved practically by control of ignition energy properly according to the engine speed, consequently this experimental ignition system can eliminate to remarkable extent the function of the engine starting, and also enhance the performance of the engine at high speed.

  • PDF

Study on the Braking Characteristics of Starting System Used for Initial Spin-up of Gas Turbine (가스터빈 초기 구동용 시동시스템의 제동특성 연구)

  • Song, Ju-Young;Park, Jun-Cheol;Lee, Ki-Hoon;Kim, Sung-Hyun;Nam, Sam-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.379-382
    • /
    • 2011
  • Engine test as well as unload test of starting motor itself was performed to evaluate the braking characteristics of starting system used for initial spin-up of gas turbine for power generation. Through the experimental evaluation of the braking performance with the capacity of braking resistor of the starting motor, we have achieved quantitative data to secure robust braking characteristics in emergency during the starting period of the gas turbine. It is possible to establish a capacity selection criterion of braking resistor to ensure the starting reliability of the gas turbine.

  • PDF

Failure Examples for Parasitic Current Leakage of Starting System in Automotive (자동차 시동시스템의 암전류 누설에 의한 고장사례연구)

  • Lee, Il-Kwon;Kim, Chung-Kyun;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.277-282
    • /
    • 2010
  • The purpose of this paper is to study and analysis the failure examples for parasitic current leakage produced in starting system on gasoline engine. It verified the discharge of battery by electric leakage because of internal wiring damage problem for CD auto changer installed in car. Also, it verified the no-stating phenomenon because of deposit forming by chemical reaction of battery fluid between battery post and cable fixing parts. It verified the damage for brush holder and commutator mixing by internal short phenomenon because of brush carbon a particle and engine oil that was flowed into internal of starting motor. It verified the working phenomenon of audio by a point of contact even if the driver turn to "LOCK" position the key.

Optimal Starting Torque Control of Wound Rotor Induction Motor by Microprocessor (개용분 PFN-PMW의 유전특성에 관한 연구)

  • Park, Min-Ho;Jung, So-Woong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.8
    • /
    • pp.316-324
    • /
    • 1984
  • In the wound rotor induction motor, the external resistor is usually added to the rotor circuit in order to limit the starting current. In this scheme, whilst the starting current is limited, the available torque is remarkably reduced. In this paper, to improve the starting characteristics the stator current can be maintained constant by adjusting the external resistor. To change the external resistor, teh chopper and the resistor is connected in parallel, and the chopper duty cycle is adjusted by microprocessor. The duty cycle is calculated according to the actual speed of motor by microprocessor look-up table map. In this suggested scheme, the starting characteristics are remarkably improved without over-current. The starting time of this system is reduced by 20-48 Percent compared with fixed extemal resistance system in the same load.

  • PDF

The Starting Characteristics Improvement of Single-Phase Induction Motor Reducing Over Current

  • Baek, Hyung-Lae;Oh, Keum-Gon;Cho, Geum-Bae;Park, Su-Kang;Lim, Yang-Su
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.531-533
    • /
    • 1996
  • The most common method of the single phase induction motor(SPIM) is to install a starting condenser and a centrifugal switch in series with the auxiliary winding. Even though this capacitor start method is embodied simply, it is feasible because of motor failure from malfunction of the centrifugal switch and the starting condenser. Moreover, it is hard to improve the performance characteristics of the SPIM. In this paper, the voltage and phase angle sequence, control strategy of the auxiliary winding of the SFIM is employed to eliminate the centrifugal switch and the starting condenser. The proposed control system is superior to a conventional system in the starting performance of SPIM. Finally, the improved starting characteristics of the SPIM is obtained with this strategy through simulation and experimental results.

  • PDF

Dynamic Modelling and Simulation of Engine Starting Process for Optimization of Diesel Engine Cold Starting System (디젤 엔진 저온 시동 시스템 최적화를 위한 엔진 시동 과정의 동적 모델링 및 시뮬레이션)

  • Park, Jung-Kyu;Bae, Keun-Sik;Yoo, Cheon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.32-39
    • /
    • 2000
  • To optimize the cold start process of a 4-stroke, 8 cylinder Diesel engine, a dynamic simulation model from cranking to idle speed is developed. Physically-based first order starter motor dynamics are used to model the performance of starting process which is very complex. These equations are solved using numerical schemes(Petzold-Gear BDF method) to describe the starting process of diesel engine and to study the effects of starting parameters. The validity of this model is examined by start test. This model can be served as a tool for computer aided control systems design to improve cold improve cold start performance.

  • PDF

Self-Starting Excitation System with Low-Power Permanent Magnet Generator

  • Cho, Chong Hyun;Lee, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2268-2275
    • /
    • 2018
  • This paper presents a high-efficiency low-power permanent magnet (PM) generator for the power supply of the generator exciter. In the conventional generator system, the power for the exciter is fed by the generator output power or an emergency battery for the starting. The proposed low-power PM generator can generate the proper power and voltage to excite the exciter field winding. According to the starting of the generator, the designed PM generator can supply the constant voltage to the Automatic Voltage Regulator (AVR), then it can be used to control of exciter field current for the generator. Because of the designed PM generator which is placed inside the conventional generator system, the emergency battery and Potential Transducer(PT) for AVR can be removed. Thus, the total efficiency can be improved. The proposed generator system is tested in the practical system. And the efficiency characteristic is analyzed.