• Title/Summary/Keyword: Stacking Process

Search Result 259, Processing Time 0.028 seconds

Aerodynamic Design Optimization of A Transonic Axial Compressor Rotor with Readjustment of A Design Point (설계유량을 고려한 천음속 축류압축기 동익의 삼차원 형상최적설계)

  • Ko, Woo-Sik;Kim, Kwang-Yong;Ko, Sung-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.639-645
    • /
    • 2003
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Two design variables were selected to optimize the stacking line of the blade, and mass flow was used as a design variable, as well, to obtain new design point at peak efficiency. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved, and new design mass flow that is appropriate to an improved blade was obtained. Also, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

  • PDF

Study on the Fabrication Process of Polarization Maintaining Photonic Crystal Fibers and Their Optical Properties

  • Cho, Tai-Yong;Kim, Gil-Hwan;Lee, Kwan-Il;Lee, Sang-Bae;Jeong, Je-Myung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • In this paper, we describe the fabrication process and the characteristics of polarization maintaining photonic crystal fibers (PM-PCFs). The PM-PCF is fabricated by stack-and-draw method, i.e., stacking silica capillary tubes (making a PM-PCF preform) and drawing to optical fiber. Firstly, a PM-PCF preform is formed by stacking two kinds of capillary tubes around a solid silica rod and jacketing these stacked tubes with an outer silica tube (out-jacket tube). Later, the desired preform is drawn to a fiber in a high temperature drawing tower. We also compare the polarization properties such as polarization dependent loss, birefringence, and differential group delay of the fabricated PM-PCF with those of the conventional PANDA PM fiber.

Effect of the Processing Parameters on the Densification and Strength of 2D SiC Fiber-SiC Matrix Composites Fabricated by Slurry Infiltration and Stacking Process

  • Lim, Kwang-Young;Jang, Doo-Hee;Kim, Young-Wook;Park, Ji-Yeon;Park, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.349-353
    • /
    • 2007
  • 2D SiC fiber-SiC (SiC/SiC) composites were fabricated via slurry infiltration and a stacking process. The effects of the additive composition and content in SiC slurries and the effect of the sintering time on the sintered density and strength of SiC/SiC composites were investigated. A slurry containing $Al_2O_3-Y_2O_3-MgO$ (AYM) additives led to a higher strength compared to a slurry containing $Al_2O_3-Y_2O_3-CaO$ (AYC) additives. The sintered density increased as the sintering time increased and showed a maximum (>98%) at 4 h. In contrast, the flexural strength increased as the sintering time increased and showed a maximum (615 MPa) at 6 h. The relative density and flexural strength increased as the additive content increased.

Fabrication and Challenges of Cu-to-Cu Wafer Bonding

  • Kang, Sung-Geun;Lee, Ji-Eun;Kim, Eun-Sol;Lim, Na-Eun;Kim, Soo-Hyung;Kim, Sung-Dong;Kim, Sarah Eun-Kyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.29-33
    • /
    • 2012
  • The demand for 3D wafer level integration has been increasing significantly. Although many technical challenges of wafer stacking are still remaining, wafer stacking is a key technology for 3D integration due to a high volume manufacturing, smaller package size, low cost, and no need for known good die. Among several new process techniques Cu-to-Cu wafer bonding is the key process to be optimized for the high density and high performance IC manufacturing. In this study two main challenges for Cu-to-Cu wafer bonding were evaluated: misalignment and bond quality of bonded wafers. It is demonstrated that the misalignment in a bonded wafer was mainly due to a physical movement of spacer removal step and the bond quality was significantly dependent on Cu bump dishing and oxide erosion by Cu CMP.

A Study on Manufacturing System Integration with a 3D printer based on the Cloud Network (클라우드 기반 3D 프린팅 활용 생산 시스템 통합 연구)

  • Kim, Chi-yen;Espaline, David;MacDonald, Eric;Wicker, Ryan B.;Kim, Da-Hye;Sung, Ji-Hyun;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.15-20
    • /
    • 2015
  • After the US government declared 3D printing technology a next-generation manufacturing technology, there have been many practical studies conducted to expand 3D printing technology to manufacturing technologies, called AMERICA MAKES. In particular, the Keck Center, located at the University of Texas at El Paso, has studied techniques for easily combing the 3D stacking process with space mobility and expanded these techniques to simultaneous staking techniques for multiple materials. Additionally, it developed convergence manufacturing techniques, such as direct inking techniques, in order to produce a module structure that combines electronic circuits and components, such as CUBESET. However, in these studies, it is impossible to develop a unified system using traditional independent through simple sequencing connections. This is because there are many problems in the integration between the stacking modeling of 3D printers and post-machining, such as thermal deformations, the precision accuracy of 3D printers, and independently driven coordinate problems among process systems. Therefore, in this paper, the integration method is suggested, which combines these 3D printers and subsequent machining process systems through an Internet-based cloud. Additionally, the sequential integrated system of a 3D printer, an NC milling machine, machine vision, and direct inking are realized.

Study on Optical Characteristics of Nano Hollow Silica with TiO2 Shell Formation

  • Roh, Gi-Yeon;Sung, Hyeong-Seok;Lee, Yeong-Cheol;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.98-103
    • /
    • 2019
  • Optical filters to control light wavelength of displays or cameras are fabricated by multi-layer stacking process of low and high index thin films. The process of multi-layer stacking of thin films has received much attention as an optimal process for effective manufacturing in the optical filter industry. However, multi-layer processing has disadvantages of complicated thin film process, and difficulty of precise control of film morphology and material selection, all of which are critical for transmittance and coloring effect on filters. In this study, the composite $TiO_2$, which can be used to control of UV absorption, coated on nano hollow silica sol, was synthesized as a coating material for optical filters. Furthermore, systematic analysis of the process parameters during the chemical reaction, and of the structural properties of the coating solutions was performed using SEM, TEM, XRD and photo spectrometry. From the structural analysis, we found that the 85 nm nano hollow silica with 2.5 nm $TiO_2$ shell formation was successfully synthesized at proper pH control and titanium butoxide content. Photo luminescence characteristics, excited by UV irradiation, show that stable absorption of 350 nm-light, correlated with a 3.54 eV band gap, existed for the $TiO_2$ shell-nano hollow silica reacted with 8.8 mole titanium butoxide solution. Transmittance observed on substrate of the $TiO_2$ shell-nano hollow silica showed effective absorption of 200-300 nm UV light without deterioration of visible light transparency.

A Study on Classification of Variant Malware Family Based on ResNet-Variational AutoEncoder (ResNet-Variational AutoEncoder기반 변종 악성코드 패밀리 분류 연구)

  • Lee, Young-jeon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Traditionally, most malicious codes have been analyzed using feature information extracted by domain experts. However, this feature-based analysis method depends on the analyst's capabilities and has limitations in detecting variant malicious codes that have modified existing malicious codes. In this study, we propose a ResNet-Variational AutoEncder-based variant malware classification method that can classify a family of variant malware without domain expert intervention. The Variational AutoEncoder network has the characteristics of creating new data within a normal distribution and understanding the characteristics of the data well in the learning process of training data provided as input values. In this study, important features of malicious code could be extracted by extracting latent variables in the learning process of Variational AutoEncoder. In addition, transfer learning was performed to better learn the characteristics of the training data and increase the efficiency of learning. The learning parameters of the ResNet-152 model pre-trained with the ImageNet Dataset were transferred to the learning parameters of the Encoder Network. The ResNet-Variational AutoEncoder that performed transfer learning showed higher performance than the existing Variational AutoEncoder and provided learning efficiency. Meanwhile, an ensemble model, Stacking Classifier, was used as a method for classifying variant malicious codes. As a result of learning the Stacking Classifier based on the characteristic data of the variant malware extracted by the Encoder Network of the ResNet-VAE model, an accuracy of 98.66% and an F1-Score of 98.68 were obtained.

Development of Cu CMP process for Cu-to-Cu wafer stacking (Cu-to-Cu 웨이퍼 적층을 위한 Cu CMP 특성 분석)

  • Song, Inhyeop;Lee, Minjae;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.81-85
    • /
    • 2013
  • Wafer stacking technology becomes more important for the next generation IC technology. It requires new process development such as TSV, wafer bonding, and wafer thinning and also needs to resolve wafer warpage, power delivery, and thermo-mechanical reliability for high volume manufacturing. In this study, Cu CMP which is the key process for wafer bonding has been studied using Cu CMP and oxide CMP processes. Wafer samples were fabricated on 8" Si wafer using a damascene process. Cu dishing after Cu CMP and oxide CMP was $180{\AA}$ in average and the total height from wafer surface to bump surface was approximately $2000{\AA}$.

Investigation into the development of automatic VLM-$_{ST}$ process utilizing two step cutting and two reference shapes (2단계 절단과 두개의 적층 기준형상을 이용한 전자동 VLM-$_{ST}$ 공정 개발에 관한 연구)

  • 안동규;이상호;김효찬;양동열;박승교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.62-65
    • /
    • 2003
  • VLM-ST process requires an additional human interaction due to the manual stacking and bonding. Hence, building time, building cost and the part quality are dependent on the skill of labor. In this present work, a novel rapid prototyping (RP) process, as an automatic VLM-ST (VLM-STA), has been proposed to improve building efficiency of VLM-ST process and reliability of products. The apparatus of VLM-STA is designed to embody the process. Several characteristics of the proposed process and the apparatus are discussed. In order to examine the efficiency and the applicability of the proposed process, various three-dimensional shapes, such as a piston and a human head shape, are fabricated on the apparatus.

  • PDF

Development and Design of Variable Lamination Manufacturing (VLM) Process by Using Expandable Polystyrene Foam (발포 폴리스티렌 폼을 이용한 가변 적층 쾌속 조형 공정 설계 및 개발)

  • 안동규;이상호;양동열;신보성;박승교;이용일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.759-762
    • /
    • 2000
  • Rapid Prototyping (RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of parts due to layer-by-layer stacking, low build speed caused by line-by-line solidification to build one layer, and additional post processing to improve surface roughness, so it is required very high cost to introduce and to maintain RP apparatus. The objective of this study is to develop and design a new RP process, Variable Lamination Manufacturing using expandable polystyrene foam sheet as part material (VLM-S), which can make up for the disadvantage of existing techniques, and to develop an apparatus to implement the process. In order to examine the possibility of practical utilization of the proposed VLM-S process for prototyping of a general three-dimensional shape, an auto-shift lever knob and a pyramid shape were fabricated.

  • PDF