• Title/Summary/Keyword: Stacked-FET

Search Result 12, Processing Time 0.025 seconds

An L-band Stacked SOI CMOS Amplifier

  • Kim, Young-Gi;Hwang, Jae-Yeon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.279-284
    • /
    • 2016
  • This paper presents a two stage L-band power amplifier realized with a $0.32{\mu}m$ Silicon-On-Insulator (SOI) CMOS technology. To overcome a low breakdown voltage limit of MOSFET, stacked-FET structures are employed, where three transistors in the first stage amplifier and four transistors in the second stage amplifier are connected in series so that their output voltage swings are added in phase. The stacked-FET structures enable the proposed amplifier to achieve a 21.5 dB small-signal gain and 15.7 dBm output 1-dB compression power at 1.9 GHz with a 122 mA DC current from a 4 V supply. The amplifier delivers a 19.7 dBm. This paper presents a two stage L-band power amplifier realized with a $0.32{\mu}m$ Silicon-On-Insulator (SOI) CMOS technology. To overcome a low breakdown voltage limit of MOSFET, stacked-FET structures are employed, where three transistors in the first stage amplifier and four transistors in the second stage amplifier are connected in series so that their output voltage swings are added in phase. The stacked-FET structures enable the proposed amplifier to achieve a 21.5 dB small-signal gain and 15.7 dBm output 1-dB compression power at 1.9 GHz with a 122 mA DC current from a 4 V supply. The amplifier delivers a 19.7 dBm saturated output power with a 16 % maximum Power Added Efficiency (PAE). A bond wire fine tuning technology enables the amplifier a 23.67 dBm saturated output power with a 20.4 % maximum PAE. The die area is $1.9mm{\times}0.6mm$.

Design of a Dual mode Three-push Tripler Using Stacked FETs with Amplifier mode operation

  • Yoon, Hong-sun;Park, Youngcheol
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1088-1092
    • /
    • 2018
  • In this paper, we propose a dual-mode frequency tripler using push-push and stacked FET structures. The proposed circuit can operate either in frequency multiplier mode or in amplifier mode. In the frequency multiplier mode, push-push frequency multiplication is achieved by allowing input signals with particular phase shifts. In the amplifier mode, the device operates as a distributed amplifier to obtain high gain. Also both modes were designed using stacked FET structure. The designed circuit showed frequency tripled output power of 9.7 dBm at 2.4 GHz with the input at 800 MHz. On the other hand, in the amplifier mode, the device showed 8.9 dB of gain to generate 19.5 dBm at 800 MHz.

A CMOS Stacked-FET Power Amplifier Using PMOS Linearizer with Improved AM-PM

  • Kim, Unha;Woo, Jung-Lin;Park, Sunghwan;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.68-73
    • /
    • 2014
  • A linear stacked field-effect transistor (FET) power amplifier (PA) is implemented using a $0.18-{\mu}m$ silicon-on-insulator CMOS process for W-CDMA handset applications. Phase distortion by the nonlinear gate-source capacitance ($C_{gs}$) of the common-source transistor, which is one of the major nonlinear sources for intermodulation distortion, is compensated by employing a PMOS linearizer with improved AM-PM. The linearizer is used at the gate of the driver-stage instead of main-stage transistor, thereby avoiding excessive capacitance loading while compensating the AM-PM distortions of both stages. The fabricated 836.5 MHz linear PA module shows an adjacent channel leakage ratio better than -40 dBc up to the rated linear output power of 27.1 dBm, and power-added efficiency of 45.6% at 27.1 dBm without digital pre-distortion.

Device Coupling Effects of Monolithic 3D Inverters

  • Yu, Yun Seop;Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • The device coupling between the stacked top/bottom field-effect transistors (FETs) in two types of monolithic 3D inverter (M3INV) with/without a metal layer in the bottom tier is investigated, and then the regime of the thickness TILD and dielectric constant εr of the inter-layer distance (ILD), the doping concentration Nd (Na), and length Lg of the channel, and the side-wall length LSW where the stacked FETs are coupled are studied. When Nd (Na) < 1016 cm-3 and LSW < 20 nm, the threshold voltage shift of the top FET varies almost constantly by the gate voltage of the bottom FET, but when Nd (Na) > 1016 cm-3 or LSW > 20 nm, the shift decreases and increases, respectively. M3INVs with TILD ≥ 50 nm and εr ≤ 3.9 can neglect the interaction between the stacked FETs, but when TILD or εr do not meet the above conditions, the interaction must be taken into consideration.

A Highly Efficient Dual-Mode 3G/4G Linear CMOS Stacked-FET Power Amplifier Using Active-Bypass

  • Kim, Unha;Kim, Yong-Gwan;Woo, Jung-Lin;Park, Sunghwan;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.393-398
    • /
    • 2014
  • A highly efficient dual-mode linear CMOS stacked-FET power amplifier (PA) is implemented for 3G UMTS and 4G LTE handset applications. High efficiency is achieved at a backed-off output power ($P_{out}$) below 12 dBm by employing an active-bypass amplifier, which consumes very low quiescent current and has high load-impedance. The output paths between high- and low-power modes of the PA are effectively isolated by using a bypass switch, thus no RF performance degradation occurs at high-power mode operation. The fabricated 900 MHz CMOS PA using a silicon-on-insulator (SOI) CMOS process operates with an idle current of 5.5 mA and shows power-added efficiency (PAE) of 20.5%/43.5% at $P_{out}$ = 12.4 / 28.2 dBm while maintaining an adjacent channel leakage ratio (ACLR) better than -39 dBc, using the 3GPP uplink W-CDMA signal. The PA also exhibits PAE of 35.1% and $ACLR_{E-UTRA}$ of -33 dBc at $P_{out}$ = 26.5 dBm, using the 20 MHz bandwidth 16-QAM LTE signal.

AC Electrical Coupling of Monolithic 3D Inverter Consisting of Junctionless FET (Junctionless FET로 구성된 적층형 3차원 인버터의 AC 특성에 대한 연구)

  • Kim, Kyung-won;Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.529-530
    • /
    • 2017
  • Electrical coupling of monolithic 3D inverter(M3D-INV) consisting of Junctionless FET(JLFET) was investigated. Depending on the thickness of Inter Layer Dielectirc (ILD) between top and bottom JLFETs, $N_{gate}-N_{gate}$ capacitance and transconductance $g_m$ are changed by the gate voltage of bottom JLFET. Therefore, when using a stacked structure with the ILD below tens nm, AC electrical coupling between two transistors in M3D-INV should be considered.

  • PDF

FinFET Gate Resistance Modeling and Optimization (FinFET 게이트 저항 압축 모델 개발 및 최적화)

  • Lee, SoonCheol;Kwon, Kee-Won;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.30-37
    • /
    • 2014
  • In this paper, the compact model for FinFET gate resistance is developed. Based on the FinFET geometry and material, the value of the gate resistance is extracted by Y-parameter analysis using 3D device simulator, Sentaurus. By dividing the gate resistance into horizontal and vertical components, the proposed gate resistance model captures the non-linear characteristics. The proposed compact model reflects the realistic gate structure which has two different materials (Tungsten, TiN) stacked. Using the proposed model, the number of fins for the minimum gate resistance can be proposed based on the variation of gate geometrical parameters. The proposed gate resistance model is implemented in BSIM-CMG. A ring-oscillator is designed, and its delay performance is compared with and without gate resistance.

Field Effect Transistor of Vertically Stacked, Self-assembled InAs Quantum Dots with Nonvolatile Memory

  • Li, Shuwei;Koike, Kazuto;Yano, Mitsuaki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.170-172
    • /
    • 2002
  • The epilayer of vertically stacked, self-assembled InAs Quantum Dots (QDs)was grown by MBE with solid sources in non-cracking K-cells, and the sample was fabricated to a FET structure using a conventional technology. The device characteristic and performance were studied. At 77K and room temperature, the threshold voltage shift values are 0.75V and 0.35 V, which are caused by the trapping and detrapping of electrons in the quantum dots. Discharging and charging curves form the part of a hysteresis loop to exhibit memory function. The electrical injection of confined electrons in QDs products the threshold voltage shift and memory function with the persistent electron trapping, which shows the potential use for a room temperature application.

SOI CMOS Miniaturized Tunable Bandpass Filter with Two Transmission zeros for High Power Application (고 출력 응용을 위한 2개의 전송영점을 가지는 최소화된 SOI CMOS 가변 대역 통과 여파기)

  • Im, Dokyung;Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.174-179
    • /
    • 2013
  • This paper presents a capacitor loaded tunable bandpass chip filter using multiple split ring resonators (MSRRs) with two transmission zeros. To obtain high selectivity and minimize the chip size, asymmetric feed lines are adopted to make a pair of transmission zeros located on each side of passband. Compared with conventional filters using cross-coupling or source-load coupling techniques, the proposed filter uses only two resonators to achieve high selectivity through a pair of transmission zeros. In order to optimize selectivity and sensitivity (insertion loss) of the filter, the effect of the position of asymmetric feed line on transmission zeros and insertion loss is analyzed. The SOI-CMOS switched capacitor composed of metal-insulator-metal (MIM) capacitor and stacked-FETs is loaded at outer rings of MSRRs to tune passband frequency and handle high power signal up to +30 dBm. By turning on or off the gate of the transistors, the passband frequency can be shifted from 4GH to 5GHz. The proposed on-chip filter is implemented in 0.18-${\mu}m$ SOI CMOS technology that makes it possible to integrate high-Q passive devices and stacked-FETs. The designed filter shows miniaturized size of only $4mm{\times}2mm$ (i.e., $0.177{\lambda}g{\times}0.088{\lambda}g$), where ${\lambda}g$ denotes the guided wave length of the $50{\Omega}$ microstrip line at center frequency. The measured insertion loss (S21)is about 5.1dB and 6.9dB at 5.4GHz and 4.5GHz, respectively. The designed filter shows out-of-band rejection greater than 20dB at 500MHz offset from center frequency.

High Isolation and Linearity MMIC SPDT Switch for Dual Band Wireless LAN Applications (이중대역 무선랜 응용을 위한 높은 격리도와 선형성을 갖는 MMIC SPDT 스위치)

  • Lee, Kang-Ho;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.143-148
    • /
    • 2006
  • This paper presents a high isolation and power-handling single-pole double-throw(SPDT) switch for dual band wireless LAN applications. The switch circuit has asymmetric topology which uses stacked-gate to have high power-handling and isolation for the Tx path. The proposed SPDT switch has been designed with optimum gate-width, bias, and number of stacked-gate FET. This SPDT switch has been implemented with $0.25{\mu}m$ GaAs pHEMT process which has Gmmax of 500mS/mm and fmax of 150GHz. The designed SPDT switch has the measured insertion loss of better than 0.9dB and isolation of better than 40dB for the Tx path and 25dB for the Rx path and the high power handling capability with PldB of about 23dBm for control voltage of -3/0V. The fabricated SPDT switch chip size is $1.8mm{\times}1.8mm$.