• Title/Summary/Keyword: Stable Radiation Pattern

Search Result 30, Processing Time 0.024 seconds

Use of Sleeve Baluns to Improve the Radiation Pattern of a Broadband Biconical Antenna (슬리브 발룬을 활용한 광대역 바이코니컬 안테나의 방사패턴 개선 연구)

  • Soily, Srabonty;Kim, Dong-Woo;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.563-570
    • /
    • 2022
  • We designed a biconical antenna with sleeve baluns that exhibited an improved radiation pattern from 3-40 GHz. In the antenna, the edges of the ring of the upper cone are blended to a cylinder. Sleeve baluns operating at specific frequencies are connected to the antenna to minimize leakage currents on the surface of the feeding coaxial cable. The radiation pattern was improved with the sleeve baluns, and the angular 3-dB beamwidth ranged from 67.1-101.1° over 3-40 GHz, which is much broader than the 21-99° of the conventional antenna.

Design of the Novel DVB-H Antenna for the Folder-Type Mobile Handheld Terminal

  • Lee, Jung-Nam;Park, Jong-Kweon;Kim, Jin-Suk
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • We have proposed a novel DVB-H(Digital Video Broadcast for Handheld) antenna for folder-type mobile handheld terminal by using a coupling element, a stub, and an L-type matching circuit. The L-type matching circuit consisting of two chip inductors is used for achieving an improved impedance matching over the DVB-H frequency band ($470{\sim}702\;MHz$). Simulated results showed the stub worked to more knot the lower and upper frequency ends of the input impedance curve. The antenna exhibits a flat gain characteristic from 2 to 2.8 dBi over the DVB-H frequency band. The radiation patterns are a stable Figure-of-eight radiation pattern in the frequency range.

The Changes of Allergenic and Antigenic Properties of Major Allergen(Pen a 1) of Brown Shrimp(Penaeus aztecus) by Gamma Irradiation (감마선 조사에 의한 갈색 새우(Penaeus aztecus) 주요알러젠(Pen a 1)의 알러지성 및 항원성의 변화)

  • Lee, Ju-Woon;Kim, Jae-Hun;Sung, Chang-Keun;Kang, Kun-Ok;Shin, Myung-Gon;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.822-827
    • /
    • 2000
  • Gamma irradiation was applied to reduce shrimp allergy. Shrimp heat-stable protein(HSP) and shrimp protein extract were gamma-irradiated at 1, 3, 5, 7 or 10 kGy in an aqueous state (1.0 mg/mL). The changes in allergenic and antigenic properties of protein extract and HSP resulted from gamma irradiation were monitored by ELISA with mouse mAb or human patients sera and immunoblotting. Conformational changes in irradiated HSP were measured by both GPC-HPLC and SDS-PAGE. The binding ability of shrimp allergic patients IgE to irradiated protein extract or irradiated heat-stable protein was dose-dependently reduced. When measured by gel permeation chromatography and sandwich ELISA, the amount of intact heat-stable protein in the irradiated solution was reduced by gamma irradiation depending upon the applied dose. SDS-PAGE showed that the main band disappeared and new bands appeared in a higher molecular weight zone. The results provide a new possibility to use irradiation process for reducing the allergenicity of shrimp.

  • PDF

Study on Thermal Pattern and Current Characteristics of an LED Street Lamp (LED 가로등의 발열 패턴 및 전류 특성에 관한 연구)

  • Kim, Hyang-Kon;Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.357-361
    • /
    • 2009
  • This study performed analysis on the thermal pattern and current characteristics of an LED ((Light Emitting Diode) street lamp. It did this using a TVS (Thermal Video System) to analyze the LED street lamp's thermal pattern, and measured its characteristics using an oscilloscope. The ambient temperature and humidity during the experiment were maintained at $24{\pm}2[^{\circ}C]$ and 50~60[%]. The capacity of the LED street lamp was 120[W] and nine sets of modules were arranged at uniform intervals. On one module, 24 LED lamps were arranged in a radial pattern. The analysis of the thermal diffusion pattern at the front of the LED lamp showed that the maximum surface temperature was approximately $34[^{\circ}C]$. In addition, there was almost no change in the temperature of the upper cover, and the temperature at the side showed a uniform thermal diffusion pattern. The surface temperature of the converter converting AC to DC increased to approximately $46[^{\circ}C]$. The analysis results of the thermal characteristics of one LED indicated uniform thermal characteristics for an initial eight minutes. However, the temperature at the center of the LED increased to approximately $82[^{\circ}C]$ after 12 minutes had elapsed. It can be seen from this that the temperature at the center of the LED was higher than the allowable temperature, $70[^{\circ}C]$ of the insulating material for general electrical devices. Therefore, it is necessary to design a lamp in such a way that the plastic insulating material does not come into contact with or get close to the LED lamp. The voltage of the LED lamp converted by the AC/DC converter was measured at DC 27[V] and the current was DC 13[A]. Consequently, it can be seen that in order to secure an adequate light source, it is important to supply a stable current that was greater than the current of other light sources. Therefore, appropriate radiation of heat is required to secure the stability and reliability of the system.

X-ray / gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method

  • Reddy, B. Chinnappa;Manjunatha, H.C.;Vidya, Y.S.;Sridhar, K.N.;Pasha, U. Mahaboob;Seenappa, L.;Sadashivamurthy, B.;Dhananjaya, N.;Sathish, K.V.;Gupta, P.S. Damodara
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1062-1070
    • /
    • 2022
  • In the present communication, pure and stable α-Bismuth Oxide (Bi2O3) nanoparticles (NPs) were synthesized by low temperature solution combustion method using urea as a fuel and calcined at 500℃. The synthesized sample was characterized by using powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible absorption spectroscopy. The PXRD pattern confirms the formation of mono-clinic, stable and low temperature phase α-Bi2O3. The direct optical energy band gap was estimated by using Wood and Tauc's relation which was found to be 2.81 eV. The characterized sample was studied for X-ray/gamma ray shielding properties in the energy range 0.081-1.332 MeV using NaI (Tl) detector and multi channel analyzer (MCA). The measured shielding parameters agrees well with the theory, whereas, slight deviation up to 20% is observed below 356 keV. This deviation is mainly due to the influence of atomic size of the target medium. Furthermore an accurate theory is necessary to explain the interaction of X-ray/gamma ray with the NPs.The present work opens new window to use this facile, economical, efficient, low temperature method to synthesize nanomaterials for X-ray/gamma ray shielding purpose.

Performance Evaluation of Antipodal Vivaldi Antenna in the Time- and Frequency-Domains for IR-UWB Systems Application (IR-UWB 시스템 응용을 위한 시간- 및 주파수-영역에서의 앤티포달 비발디 안테나 성능 평가)

  • Koh, Young-Mok;Kim, Keun-Yong;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2012
  • In this paper, we designed the antipodal vivaldi antenna for IR-UWB systems application and evaluated IR-UWB antenna performance for the ultra wideband impulse signal transmission in the time- and frequency-domain. The designed antipodal vivaldi antenna was fabricated using FR-4 substrate which thickness 1.6 mm, dielectric constant ${\epsilon}_r=4.7$ and $tan{\delta}=0.002$. We measured the return loss, far filed radiation pattern at the anechoic chamber in the frequency-domain. We also performed the pulse fidelity analysis in the time-domain using nano-second impulse signal transmission and demonstrated the feasibility of ultra wideband signal stable transmission in the UWB band. The designed and fabricated antipodal vivaldi antenna could be emitting and receiving the IR-UWB signal while preserving low pulse distortion and good radiation pattern in time- and frequency-domain.

Printed Dipole Antenna Fed by Broadsided Coupled Stripline for Wideband (측면 결합 스트립 선로를 이용한 광대역 프린트 다이폴 안테나)

  • Seung-Yeop, Rhee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1033-1038
    • /
    • 2022
  • In this paper, the design of a printed dipole antenna fed by broadside coupled striplines (BCS) for the 3.5GHz band is described. The two fins of the bow tie are, respectively, on the two sides of the substrate. The feeding balanced lines adopted for 1×2 array are the BCS. The obtained numerical results are in good agreement with experimental data. Through experiments with printed dipole antennas of various extended angles, the printed dipole antenna exhibits the wide bandwidth in the desired frequency band, which has a bandwidth of 28% for VSWR < 2.0 : 1. And within this bandwidth, This printed dipole antenna achieves a stable radiation pattern. It is found that the narrow band and feeding for array characteristic which is a disadvantage of the conventional printed dipole antenna can be improved. The radiation pattern showed omnidirectional characteristics and the maximum gain was about 4.4dBi.

Research on Antennas Placement of Line-of-sight Datalink for Transport Drone (수송드론 가시선 데이터링크 안테나 배치 방안 연구)

  • Sung-Ho Lim;Kilyoung Seong;Jae-Kyung Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.63-75
    • /
    • 2023
  • The antenna radiation pattern was simulated by arranging the mounted antennae of the transport drone in 5 locations where radio interference was expected to be low, and they could be mounted. Depending on the mounting location, the probability that the link margin was less than 0 dB was (5.41 - 26.92) %. When two antennae were mounted and one was selected, the probability was (0.11 - 3.3) %. Among the arrangements, placing one antenna in the upper part of the front and one in the lower part of the rear showed the lowest link fail probability. In this case, it was analyzed that if the attitude roll and pitch of the aircraft were limited, link fail would not occur at an operating distance of 12 km or less. An antenna selection formula for this case was derived, and a method of reducing frequent alternation of antennae was applied to maintain a stable link.

Band-Notched Ultra-Wideband Antenna with Asymmetric Coupled-Line for WLAN and X-Band Military Satellite

  • Lee, Jun-Hyuk;Sung, Young-Je
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.34-37
    • /
    • 2013
  • This paper presents a novel ultra-wideband (UWB) antenna that rejects narrow and broad bands and is suitable for wireless communications. The base of the proposed antenna has a circular patch that can cover the UWB frequency range (3.1~10.6 GHz). The interference issues caused by co-existence within the UWB operation frequency are overcome by a design that uses a parallel-coupled asymmetric dual-line with a circular monopole antenna. The proposed antenna showed a stable radiation pattern, realized gain and reflection coefficient lower than -10 dB across the UWB operation bandwidth except for 5.15~5.85 GHz and 7.25~8.4 GHz. The fabrication, simulation, and measurement results obtained for the proposed antenna were in good agreement with the expected values.

Low-Profile Planar Inverted-F Antenna for Ultrawideband Applications

  • Yun, Junsik;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.235-240
    • /
    • 2016
  • In this paper, a low-profile planar inverted-F antenna (PIFA) for ultrawideband (UWB) applications is proposed. The antenna consists of a PIFA and a ground plane with a slot. The addition of the slot not only improves the impedance matching of the PIFA but also forms an additional resonance. Therefore, the proposed antenna has a wideband characteristic covering the full UWB frequency range (3.1 GHz to 10.6 GHz) and a stable and nearly omnidirectional radiation pattern. The antenna also has a smaller volume and thickness compared to previous UWB PIFAs.